Шевченко Владислав Владимирович
Шевченко Владислав Владимирович

Мои публикации


ОБЗОРНАЯ КАРТА ЛУНЫ 2024

Гришакина Е.А., Родионова Ж.Ф., Шевченко В.В., Слюта Е.Н.

Абстракт. В процессе составления «Обзорной карты Луны 2024» масштаба 1:13 000 000 были изучены характерные особенности лунного рельефа, отобраны и обработаны данные лазерного высотомера LOLA космического аппарата LRO, которые были использованы в качестве исходной информации. При картографировании использовано программное обеспечение ESRI ArcGIS 10.1. В ходе разработки цветовой шкалы для отображения высот на карте были учтены различия в рельефе видимого и обратного полушарий Луны, и решена задача отображения характерных форм лунного рельефа. На карте приведены названия лунных морей, заливов, озер, гор, долин, кратеров и других образований на латинском и русском языках, показаны места посадок космических аппаратов (КА) и пилотируемых кораблей Аполлон. На «Обзорной карте Луны 2024», в отличие от предыдущей версии «Обзорной карты Луны 2022», показаны места посадок индийского КА “Сhandrayaan 3”, японского КА “SLIM” и китайского КА “Chang’e 6”.

LUNAR SURVEY MAP 2024.tif


СОЗДАНИЕ КАРТЫ ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ

Гришакина Е.А., Родионова Ж.Ф., Слюта Е.Н., Феоктистова Е.А., Шевченко В.В.
ABSTRACT-BOOK of the Fourteenth Moscow Solar System Symposium. October 9-13.2023. 14 MS-3-MN-PS-13.

Абстракт. Описана методика создания Карты приполярных областей Луны 1:5 000 000 масштаба, ограниченной параллелями +/- 60°. Условным знаком на карте показано место мягкой посадки КА «Чандраян 3». Количество кратеров диаметром 10 км и более в северной полярной области составляет 2032 кратера, а в южной области 1320 кратеров. Показано, что кратеры южной полярной области в среднем на 1-2 км глубже, чем кратеры северной полярной области. Приведены графики зависимости числа кратеров от соотношения глубина-диаметр в северной и южной полярных областях.

14M-S3_New.docx


КАРТА ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ ОТ ПАРАЛЛЕЛЕЙ +/-55°

Гришакина Е.А., Родионова Ж.Ф., Феоктистова Е.А., Слюта Е.Н., Шевченко В.В.

Абстракт. Карта приполярных областей Луны составлена в Полярной стереографической проекции в масштабе 1:6 000 000. Северная и южная приполярные области ограничены параллелями +/- 55° для того, чтобы показать место падения аппарата «Луна 25». Рельеф лунной поверхности показан методом послойной многоцветной «отмывки» на основе цифровой модели по данным лазерного альтиметра LOLA КА «Lunar Reconnaissance Orbiter». Высоты отсчитаны от сферы радиусом 1737,4 км. Наименования форм рельефа Луны на латинском языке нанесены на карту согласно решениям МАС и на русском языке в соответствие с книгой «Наименования форм рельефа Луны» под общей редакцией В.В. Шевченко, 2022 г. Карта Филипа Стука «Lunar Landing and Impact Sites» использована для показа мест падений КА “Lunar Prospector”, “Chandrayaan 1, 2”, “LCROSS”, “Kaguya”, “GRAIL A, GRAIL B”. Место мягкой посадки КА «Чандраян 3» отмечено на карте флажком.

Составитель: Гришакина Е.А.
Редакторы: Родионова Ж.Ф., Феоктистова Е.А.
Научные редакторы: Шевченко В.В., Слюта Е.А.
Карта составлена Государственным астрономическим институтом им. П.К. Штернберга МГУ и Институтом геохимии и аналитической химии им. В.И. Вернадского РАН в 2023 г.

Moon_55_2023YFS_500dpi.pdf


КАРТА ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ

Гришакина Е.А., Родионова Ж.Ф., Феоктистова Е.А., Слюта Е.Н., Шевченко В.В.
Государственный астрономический институт им. Штернберга МГУ,
Институт геохимии и аналитической химии им. Вернадского РАН.

Абстракт. Карта приполярных областей Луны, ограниченных параллелями +/- 60°, составлена в масштабе 1:5 000 000 в полярной стереографической проекции. Эти районы представляют особый интерес, поскольку там в постоянно затененных областях в глубоких кратерах был обнаружен лед. Высоты лунной поверхности определены с высокой точностью альтиметрами КА «Кагуя» и «Лунар реконнеисенс орбитер» (LRO) Для отображения рельефа на карте нами использовалась цифровая модель с разрешением 0,5 км на пиксель. Высоты на карте определены относительно сферы со средним радиусом 1737,4 км. Перепад высот на Луне составляет около 20 км. Шкала высот в приполярных районах представлена 17 уровнями, отражающими разные высоты и глубины лунной поверхности. Трехмерное отображение поверхности показано методом цветовой «отмывки» в соответствии с цифровой моделью Гришакиной Е.А. При этом использовалось программное обеспечение ESRI ArcGIS 10.1. На карте приполярных областей подписаны все собственные наименования кратеров на латинском языке, принятом Международным астрономическим союзом (МАС) и русском языке. Условным знаком показано место мягкой посадки индийского спускаемого аппарата Чандрайян-3, впервые севшего вблизи южного полюса Луны 23 августа 2023 года. Карта приполярных областей Луны представлена в двух форматах для печати: А1 и А3.

Moon_Polar_А1R.jpg

Moon_Polar_А3R3.jpg


Исследование и картографирование Луны космическими аппаратами и кораблями

Родионова Ж.Ф.1, Шевченко В.В.1, Гришакина Е.А.2, Слюта Е.Н.2
1 - Государственный астрономический институт имени П.К. Штернберга МГУ (ГАИШ МГУ)
2 - Институт геохимии и аналитической химии имени В.И. Вернадского РАН (ГЕОХИ РАН)
Космическая техника и технологии № 4(39), 2022, стр. 38-51

Абстракт. В статье описаны основные результаты исследований лунной поверхности, выполненных по данным орбитальных и спускаемых аппаратов и кораблей. В качестве иллюстраций использована Обзорная карта Луны в масштабе 1:13 000 000, на которой отображён рельеф лунной поверхности. Карта составлена на основе цифровой модели рельефа, построенной по данным лазерного высотомера американского космического аппарата Lunar Reconnaissance Orbiter с точностью 64 пикселя на градус (0,5 км на пиксель). В дополнение к рельефу, отображённому методом светотеневой отмывки, на карте приведены названия крупных образований Луны на латинском языке, принятом Международным астрономическим союзом, и на русском. Условными знаками на карте обозначены места посадок всех космических аппаратов и пилотируемых кораблей.

29-44.pdf


Международная молодежная школа-конференция «Космическая наука» в г. Казани (КФУ).

В.В.Шевченко, 29.11.2018.


Утилизация привнесенного на Луну астероидного вещества — экономичный путь к получению космических ресурсов высокой ценности.

В.В.Шевченко, 2018 г. Государственный астрономический институт имени П.К. Штернберга МГУ (ГАИШ МГУ)
Университетский пр-т, 13, г. Москва, Российская Федерация, 119991, e-mail: director@sai.msu.ru

В последние годы в аналитических обзорах эксперты все чаще обращают внимание на рост дефицита редких и редкоземельных элементов, необходимых для развития передовых технологий в современной промышленности. Для решения этой проблемы в будущем были предложены проекты утилизации вещества астероидов, сближающихся с Землей. Несмотря на сложности захвата, транспортировки и последующей разработки в космосе подобного объекта, такой путь решения задачи казался технологически возможным и рентабельно оправданным. Железо-никелевый астероид размером 10 м в поперечнике мог бы содержать до 75 т редких и редкоземельных металлов, прежде всего металлов платиновой группы, что эквивалентно коммерческой стоимости в ценах 2016 г. примерно $2,8 млрд. В данной работе показано, что утилизация астероидного вещества, поступающего на лунную поверхность, может оказаться технологически более простой и экономически более рентабельной. До настоящего времени считалось, что лунные ударные кратеры не содержат пород образовавших их астероидов, так как при высоких скоростях падения ударники испаряются в процессе столкновения с поверхностью Луны. Благодаря последним исследованиям выяснилось, что при скорости падения меньше 12 км/с ударник может частично сохраниться в механически раздробленном состоянии. Следовательно, к числу возможных ресурсов, присутствующих на лунной поверхности, можно отнести никель, кобальт, платину и редкие металлы астероидного происхождения. Приводимые расчеты показывают, что общая масса, например, платины и платиноидов на поверхности Луны в результате падения астероидов может составить до 14,1 млн т.

utilization.pdf


Снимки с нового лунного спутника подтвердили гипотезу свежих оползней и обрушений на стенках кратеров.

В.В.Шевченко, 14.11.2009.


Творческий путь в астрономии и космических исследованиях Ю.Н. Липского.

В.В.Шевченко, Государственный астрономический институт им.П.К.Штернберга, 2009.

Lipskiy_100.pdf


Новые результаты, полученные лунным спутником «ЛРО», и участие в проекте сотрудников ГАИШ.

В.В.Шевченко, Государственный астрономический институт им.П.К.Штернберга, 2009.

New results.pdf


EVALUATING THE STRUCTURE OF THE SURFACE LAYER OF MERCURY.

V.V.Shevchenko, Sternberg State Astronomical Institute, Moscow University, Moscow 119992, Russia, shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms082.pdf


MERCURY: LOCAL VARIATIONS OF THE PHOTOMETRIC RELIEF.

V.V.Shevchenko, Sternberg State Astronomical Institute, Moscow University, Moscow 119992, Russia, shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms083.pdf


REMOTE METHOD OF IDENTIFICATION OF THE EJECTA LUNAR TERRAINS AND THEIR COMPOSITION FITURES.

V.V. Shevchenko1, 2, P. Pinet2, S. Chevrel2, S.G. Pugacheva1, Y. Daydou2.

1 Sternberg State Astronomical Institute, Moscow University, 13 Universitetsky pr., 119992 Moscow, Russia;
2 UMR 5562/CNES/Observatory Midi-Pyrenees, Toulouse University, 14 avenue E. Belin, 31400 Toulouse, France. shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms084.pdf


REMOTE DETERMINATION OF LUNAR SOIL MATURITY.

V.V.Shevchenko1,2, P.C.Pinet1, S.Chevrel1, Y.Daydou1, T.P.Skobeleva2, O.I.Kvaratskhelia3, C.Rosemberg1.
1UMR 5562 "Dynamique Terrestre et Planetaire"/CNRS/UPS, Observatoire Midi-Pyrenees, Toulouse, 31400 France;
2Sternberg Astronomical Institute, Moscow University, Moscow, 119992, Russia,
3Abastumany Astrophysical Observatory, Georgian Academy of Sciences, Georgia. shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms085.pdf


MERCURY: SURFACE LAYER STRUCTURE FROM OPTICAL PROPERTIES.

V.V.Shevchenko, Sternberg State Astronomical Institute, Moscow University, Universitetsky 13, Moscow 119899, Russia, shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia.

MS064.pdf


PERMANENTLY SHADOWED AREAS AT THE LUNAR POLES.

V. V. Shevchenko1, E. A. Kozlova1, G. G. Michael1.
1.Sternberg State Astronomical Institute, 119899, Moscow, Russia. shev@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia.

MS065.pdf


VARIABLE RADIO EMISSION OF THE MOON AT 25 MM DURING THE LEONID 2000 METEOR SHOWER.

A.A. Berezhnoi (1), E. Bervalds (2), O.B. Khavroshkin (3), G. Ozolins (2), V.V. Shevchenko (1), V.V. Tsyplakov (3)
(1) SAI, Moscow, Russia; (2) VIRAC, Riga, Latvia; (3) UIEP, Moscow, Russia
Geophysical Research Abstracts Volumi 3, 2001.

Radioseismology of the Moon and planets is based on registration and interpretation of electromagnetic radiation of seismic origin. The frequency of such electromagnetic radiation varies from some kHz to the frequency of soft X-ray radiation. The most probable two models of transformation of mechanical stress into electromagnetic radiation are: 1) the formation of new microcracks; 2) charges arising at the peaks of existing cracks drawing under the action of increasing load. We observed the Moon on November 16 - 18 with the 32 m antenna of the Ventspils International Radio Astronomy Center at 12.2 GHz. The half-power beamwidth was 3.5 arcminutes. The DSB bandwidth is 2 x 22 MHz and output time constant is 1 sec. The observable lunar region was a seismic active region (30W, 5S). We could not exactly track the antenna with the velocity of the Moon, an observable region lagged behind and during 30 minutes of observation cycle the beam draw a near 15 arcminutes long trip on the lunar surface in direction to Mare Serentatis. During the morning of November 17 we registered significant quasiperiodic oscillations of the lunar radio emission starting near 1:44 UT. Similar oscillations were registered on November 18 starting near 2:28 UT. More or less intensive oscillations (quasiperiods were equal to 1-2 minutes) were received until November 18, 9:30 UT with bottom to peak heights of some K, sometimes up to 10K. The character of these oscillations is different from atmospheric fluctuations. The time of observed oscillations does not contradicts with predictions of McNaught about the Leonid activity on the Moon. Similar oscillations were registered after the Lunar Prospector impact (July 31, 1999) during observations of the Moon at 13 and 21 cm. These results can be explained by detection of the lunar radio emission of seismic origin. The interpretation of quasiperiodic oscillations in terms of Nikolaevsky's waves is given. Implications of radioseismic method of investigations of the Moon for determination of the intensity of meteor showers on lunar orbit and for estimation of the mineral composition of lunar regolith are described.


THE CHEMICAL COMPOSITION OF LUNAR REGOLITH NEAR COLD TRAPS.

Berezhnoi, A.A. (1), Klumov B.A.(2), Shevchenko V.V.(1)
(1) Sternberg Astronomical Institute, Moscow, Russia, (2) Institute of Dynamics of Geospheres, Moscow, Russia
Geophysical Research Abstracts Volumi 3, 2001.

In our previous papers we have found that a significant part of cometary matter is captured by the Moon after a low-speed collision between a comet and the Moon. Now we consider the chemical composition of impact vapour formed after a such collision based on new kinetical model of chemical processes. We have found that H2O, CO2, and SO2 are main H-, C-, and S-containing species respectively in the fireball. The temperature in polar regions near cold traps is suitable for the presence of some volatile compounds (sulfur, carbon and hydrocarbons) in the regolith. We estimate an amount of sulfur- and carbon- containing species delivered to lunar polar regions due to cometary impacts. Our estimations can be checked during conduction of observations by the SMART-1 spacecraft.


THE SPACE ANGULAR FUNCTION OF THE MOON'S THERMAL EMISSION (10 -12 MICRON).

S.G. Pugacheva and V.V. Shevchenko
Sternberg State Astronomical Institute, Universitetskiy pr.13, Moscow, 119899, Russia pugach@sai.msu.ru Fax: 007-095-932-88-41
Geophysical Research Abstracts Volumi 3, 2001.

The features of the lunar surface, varying in their individual properties, have a brightness constant in time, and the dynamics of reflected and own radiation is determined in each case only by the geometry of observing conditions at any given moment. Therefore, using the known characteristics of the lunar features, we can determine the standard values of the radiation emitted or reflected by a great number of particular objects, which form a system of standards in a certain wavelength and energy-flux range. The space function of the Moon's thermal emission was constructed by results of the statistical processing of the database 1655 lunar sites in the vector form. The database contains the brightness characteristics of the emitted and reflected radiation measured in an IR (10-12 mm) and a visible (0.445 mm) range for 23 Moon's phase angles and 1954 lunar regions. The space function is based on physical regularities and statistical relationship between the intensity of thermal and reflected radiation, the geometry of observation and illumination, and the albedo and microrelief of the lunar surface. An analytic formula of the dependence of radiation temperature of the lunar surface on the incidence angular parameters make it possible to calculate the infrared temperature for any geometry of the angular parameters. The root-mean-square error in the determination of the radiation temperature is +1.5 K. The computer images were constructed in the form of contour maps of brightness and temperature, of thermal inertia and other thermal parameters, using the database of brightness and temperatures values for lunar-surface areas.


THE CRATERING FEATURES OF THE BASIN "SOUTH POLE-AITKEN".

J.Rodionova and E.Kozlova Sternberg State Astronomical Institute
Geophysical Research Abstracts Volumi 3, 2001.

Morphological features of craters in the South Pole-Aitken are studied. Craters in the basin are compared to craters located in highland and mare regions. In comparision studies, the following morphological features were considered: the degree of rim degradation; the presence of terraces and faults, hills, peaks and ridges, fissures and chains of small craters, lava on the crater floor; the character of the floor; and the presence of ray systems. In the basin 3.8 million sq. km in area, 1538 craters of 10 km in diameter or larger are found. Craters in the South Pole-Aitken are found to be less degraded than those in the mare region. Additionaly, terraces on the inner slopes of craters in the basin are less degraded, and more faults are observed in the craters in the highland region. The craters in the three regions studed are similar in the presence of peaks and hills, while the density of craters with fissures and chains of small craters on the floor are greater in the mare! region. No craters with ray systems are found in the basin. The South Pole Aitken Basin is assumed to have formed late in the period of heavy bombardment. The morphology of craters in the mare region is found to differ drastically from those in the basin and the highland region. A low crater density and the abundance of crater-ruins and craters with faults in the mare region are due to lava flooding of ancient depressions during the period of basaltic volcanism and the destruction of the majority of craters formed in the preceding heavy bombardment period. The mare regions differs in the densities of craters with fissures and chains of small craters, peaks and lavas on the floor. We attribute these distinctions to the difference in endogenic processes that proceeded in the considered regions. The endogenic processes should reveal themselves more often in the mare regions because the lunar crust here is much thinner than in the highland regions.


LUNAR RESOURCES FOR RESCUE OF MANKIND IN XXI CENTURY.

V.V.Shevchenko
Sternberg State Astronomical Institute, Moscow University, Moscow, Russia shev@sai.msu.ru
Geophysical Research Abstracts Volumi 3, 2001.

In results of many ecological investigations it has been found that the permissible level of the energy production inside Earth's environment is about 0.1% of solar energy received by Earth's surface. The value is about 90 TW (90 x 10 12 Watt). On the other hand, the general estimation shows that the total energy use (and production, accordingly) in the world is about 16 TW in the end of 2000. This value will increase by factor of two (about 34 TW) to the year 2050. If the tendency will be preserved the total energy production in the world will approach to 98 TW to the year 2100. It means the permissible level of the energy production inside Earth's environment will be exceeded. But it is obviously that the processes destroying Earth's environment in global scale will begin before it - after middle of century. Hence, the first result of the practical actions for rescue of the Earth's environment must be obtained not late than in 2020 - 2030. It means that general decisions must be approved now or in the beginning of the new century. The only way to resolve this problem consists in the use of extraterrestrial resources. The nearest available body - source of space resources is the Moon. The most known now space energy resource is lunar helium-3. Very likely, the lunar environment contains new resource possibilities unknown now. So, the lunar research space programs must have priority not only in fundamental planetary science, but in practical purposes too..


SPECTRAL FEATURES OF THE AVALANCHE DEPOSITS IN LUNAR CRATER REINER.

V.V.Shevchenko1,2, P.C.Pinet1, S.Chevrel1, Y.Daydou1, T.P.Skobeleva2, O.I.Kvaratskhelia3,
C.Rosemberg1. 1UMR 5562 "Dynamique Terrestre et Planetaire"/CNRS/UPS, Observatoire Midi-
Pyrenees, Toulouse, 31400 France; 2Sternberg Astronomical Institute, Moscow University, Moscow,
119992, Russia, 3Abastumany Astrophysical Observatory, Georgian Academy of Sciences, Georgia.
shev@sai.msu.ru.

m44_75_shevchenko_etal.pdf


FEATURES OF THE HYDROGEN DISTRIBUTION AROUND LUNAR CRATERS PROCLUS AND KEPLER.

M.P. Sinitsin, V.V. Shevchenko, Sternberg Astronomical Institute, Moscow University,
Moscow, 119992, Russia shev@sai.msu.ru.

m44_76_sinitsin_shevchenko.pdf


Научно-популярные обзоры

Наша уникальная Солнечная система.


Биография

Шевченко Владислав Владимирович. Родился 18 июня 1940 года в гор. Москве.

Окончил Московский институт инженеров геодезии, аэрофотосъемки и картографии, отделение астрономо-геодезии в 1964 году по специальности "астроном-геодезист". С 1964 года - в Государственном астрономическом институте им. П.К.Штернберга МГУ

Доктор физико-математических наук (1982г.), заведующий Отделом исследований Луны и планет ГАИШ МГУ (с 1978 г. по настоящее время).

Член Международного астрономического союза (МАС), Комиссия 16, председатель подгруппы лунной номенклатуры, член Рабочей группы МАС по номенклатуре планетной системы; председатель Рабочей группы "Луна и Меркурий" Астросовета РАН; член редколлегии журнала РАН "Астрономический вестник, член редколлегии журнала "Земля и вселенная".

Награжден медалью имени С.П.Королева (1988 г.) и медалью имени В.П.Глушко (1992 г.). Заслуженный научный сотрудник Московского университета (1997 г.).

Область научных интересов. Исследования тел Солнечной системы с помощью наземных наблюдений и изучения планет и спутников на основе данных, полученных с помощью космических аппаратов. Тема кандидатской диссертации: "Физическое картирование Луны на основе фотометрических данных" (1969 г.). Тема докторской диссертации: "Фотометрические исследования Луны на основе космических съемок" (1981 г.). Был соавтором и руководителем работ по составлению карт и глобусов Луны и глобусов Марса. Участвовал в проведении и обработке результатов космических проектов "Зонд" и "Луноход", в подготовке проекта обитаемой базы на Луне, разработал систему методов дистанционного поиска внеземных природных ресурсов. Вывел систему фундаментальных фотометрических постоянных Луны и пространственную индикатрису рассеяния. На основе изучения результатов космических съемок диффузных структур на Луне и по наземным телескопическим наблюдениям этих образований выдвинул гипотезу интенсивного кометного ливня во внутренней части Солнечной системы 10 млн. лет назад, следами которого предположительно являются указанные альбедные аномалии.

Руководил работой студентов, аспирантов и соискателей, читал спецкурсы на астрономическом отделении и на геологическом факультете МГУ. Читал курсы лекций в Центре подготовки космонавтов им. Ю.А.Гагарина.

Подготовил двух кандидатов наук.

Автор 190 научных публикаций. Автор и соавтор 11 книг и монографий.

Ознакомиться со списком проектов, в которых В.В.Шевченко принимал участие и его научной деятельностью можно на сайте ВИПЕРСОН.

Фотоальбом

26 Генеральная Ассамблея Европейского Геофизического общества, Ница, Франция, 25-30 марта, 2001.


Контактная информация

Адрес электронной почты: shev@sai.msu.ru
Служебный телефон: 8-495-939-10-29