Zhanna F. Rodionova
Zhanna F. Rodionova

Publications


Development of a new Phobos atlas based on Mars Express image data

I.Karachevtseva a, A. Kokhanov a, J. Rodionova a,b, A. Konopikhin a, A. Zubarev a, I. Nadezhdina a, L. Mitrokhina a, V. Patratiy a, J. Oberst a,c,d
a-Moscow State University of Geodesy and Cartography (MIIGAiK), MIIGAiK Extraterrestrial Laboratory(MExLab), Gorokhovsky per., 4, 105064, Moscow, Russia.
b-Sternberg Astronomical Institute Moscow State University, University pr., 13,119992, Moscow, Russia.
c-German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany.
d-Technical University Berlin, Institute for Geodesy and Geoinformation Sciences, Berlin, Germany.
Planetary and Space Science 2015, 108, pp. 24-30

Abstract. A new Phobos Atlas has been prepared, which includes a variety of thematic maps at various projections and scales, emphasizing dynamic topography, surface multispectral properties, geomorphology, as well as grooves-and crater statistics. The atlas benefits from innovative mapping techniques and recent results from Mars Express image processing: new derived control point networks, shape models and gravity field working models. A structure of the atlas is presented and some examples of the maps are shown. The Phobos Atlas can be useful for the future mission planning to the Martian satellite.

3863_PSS_Phobos Atlas_Final.pdf


THE HISTORY OF RESEARCHES OF THE MOON BY SPACE VEHICLES DEPICTED ON THE POSTAGE STAMPS OF THE WORLD

Renato Dicati¹, Zhanna Rodionova²
1-USFI (Unione Stampa Filatelica Italiana) Milan, Italy, e-mail: renato.dicati@gmail.com
2-Sternberg State Astronomical Institute 119992 Universitetskiy pr.13 e-mail: marss8@mail.ru
THE NINTH MOSCOW SOLAR SYSTEM SYMPOSIUM 2018 MS-PS-84

Abstract. Although the spatial philately was born after the launch of the first artificial satellite, Sputnik 1, the first its stamps is included in a set dedicated to Soviet Union scientists, issued in August 15, 1951, that depicts Konstantin Tsiolkovsky, the father of astronautics and the first image of a cosmic rocket. A few days after the launch of Sputnik, on October 7, 1957, two stamps were issued: the first belonging to the set dedicated to the International Geophysical Year, contains the text ‘research with rockets’ and an image in which a rocket is drawn on the background of a starry sky. The second stamp, dedicated to the birth’s centenary of Tsiolkovsky, shows the portrait of the scientist and, in the background, a rocket and the planet Saturn. On this stamp November 28, 1957, a black overprint was imprinted with the words “4 October 1957 the first Earth’s artificial satellite”. This was the first real astrophilatelitic issue. There are tables with the names of lunar spacecrafts and images of stamps devoted them in the poster.

Dicati _Rodionova_Abstract _9MS3.pdf


Mapping of potential lunar landing areas using LRO and SELENE data

A.A. Kokhanova,*, I.P. Karachevtsevaa, A.E. Zubareva, V. Patratya, Zh.F. Rodionovab, J. Oberstc,d
a MIIGAiK Extraterrestrial Laboratory (MExLab), Moscow State University of Geodesy and Cartography (MIIGAiK), Moscow, Russia
b Sternberg State Astronomical Institute Lomonosov Moscow University, Moscow, Russia
c Technical University of Berlin, Berlin, Germany
d German Aerospace Center (DLR), Berlin, Germany
Planetary and Space Science 162 (2018) 179-189

Abstract. We apply cartographic methods on remote sensing data obtained by Lunar Reconnaissance Orbiter (LRO) and Kaguya (SELENE) to characterize potential landing sites for the “Luna-25” mission, previously selected. To identify presumable hazards (steep slopes, high ruggedness, cratered terrain) we developed special algorithms and GIS-tools. Sets of hazard maps for 3 high-priority potential landing sites were created.

Mapping-of-landing-sites_final.pdf


Mapping of inner and outer celestial bodies using new global and local topographic data derived from photogrammetric image processing

I.P. Karachevtsevaa, A.A. Kokhanova, J.F. Rodionovaa,b, A.Yu. Zharkovaa,, M.S. Lazarevaa
a-Moscow State University of Geodesy and Cartography (MIIGAiK), MIIGAiK Extraterrestrial laboratory (MExLab),
105064. Gorokhovsky per., Moscow, Russia, i_karachevtseva@miigaik.ru
b-Sternberg State Astronomical Institute, 1198993, Moscow, Russia
Commission IV, WG IV/8

Abstract. New estimation of fundamental geodetic parameters and global and local topography of planets and satellites provide basic coordinate systems for mapping as well as opportunities for studies of processes on their surfaces. The main targets of our study are Europa, Ganymede, Calisto and Io (satellites of Jupiter), Enceladus (a satellite of Saturn), terrestrial planetary bodies, including Mercury, the Moon and Phobos, one of the Martian satellites. In particular, based on new global shape models derived from three-dimensional control point networks and processing of high-resolution stereo images, we have carried out studies of topography and morphology. As a visual representation of the results, various planetary maps with different scale and thematic direction were created. For example, for Phobos we have produced a new atlas with 43 maps, as well as various wall maps (different from the maps in the atlas by their format and design): basemap, topography and geomorphological maps. In addition, we compiled geomorphologic maps of Ganymede on local level, and a global hypsometric Enceladus map. Mercury’s topography was represented as a hypsometric globe for the first time. Mapping of the Moon was carried out using new images with super resolution (0.5-1 m/pixel) for activity regions of the first Soviet planetary rovers (Lunokhod-1 and -2). New results of planetary mapping have been demonstrated to the scientific community at planetary map exhibitions (Planetary Maps Exhibitions, 2015), organized by MExLab team in frame of the International Map Year, which is celebrated in 2015-2016. Cartographic products have multipurpose applications: for example, the Mercury globe is popular for teaching and public outreach, the maps like those for the Moon and Phobos provide cartographic support for Solar system exploration.

isprs-archives-XLI-B4-411-2016.pdf


Atlas Planetary Mapping: Phobos Case

I.P. Karachevtseva¹, A. A. Kokhanov¹ and Zh. Rodionova²
1-Moscow State University of Geodesy and Cartography
2-Sternberg Astronomical Institute of Lomonosov Moscow University
In the book Planetary Cartography and GIS. ed. Henrik Hargitai,Springer Nature Switzerland AG 2019, pp 235-251

Abstract. We present a general procedure of the Phobos Atlas creation. Main principles of mapping, mathematical, and geographical basics are described and justified. Data sources for mapping are listed. Approaches in the development of legends and design are considered, and some examples of the maps are shown.

Springer Phobos.pdf


Cartography of the Soviet Lunokhods’Routes on the Moon

P. Karachevtseva¹, A. A. Kokhanov¹, N. A. Kozlova¹ and Zh. F. Rodionova²
1-Moscow State University of Geodesy and Cartography
2-Sternberg Astronomical Institute of Lomonosov Moscow University
In the book Planetary Cartography and GIS. ed. Henrik Hargitai,Springer Nature Switzerland AG 2019, pp 263-278

Abstract. Soviet missions Luna-17 (1971) and Luna-21 (1973) deployed the roving robotic vehicles Lunokhod-1 and Lunokhod-2 on the lunar surface. The Lunokhods (Moonwalkers) were the first extraterrestrial rovers that were operated remotely from Earth. Using Lunar Reconnaissance Orbiter (LRO) narrowangle camera (NAC) (Robinson et al. 2010), the Lunokhods’ routes have been reconstructed (Karachevtseva et al. 2013; 2017). Following the rover tracks that are visible on high-resolution LROC NAC images, we identified the exact rover traverses and compared them with data from archive topographic maps created during Soviet lunar missions. Derived LRO data (DEMs and orthomosaics) allowed us to analyze the topography of the Moon area at the local level and to map the Lunokhods’ routes with more details.

Springer Lunokhod.pdf


Hypsometric Globe of Mars – 3D Model of the Planet

Zh. F. Rodionova 1, J. A. Brekhovskikh2
1 Sternberg State Astronomical Institute Lomonosov Moscow University, Russia; marss8@mail.ru
2 Space Research Institute, Moscow, Russia; julia_br@iki.rssi.ru

Abstract
The new Hypsometric Globe of Mars is based on laser altimeter data of Mars Global Surveyor spacecraft. The diameter of the globe is 21 cm. Coordinates and the heights of 64 800 points on the surface of Mars were used for creating a 3-D Model of the surface of Mars.. A digital model of the relief was constructed with ArcGIS software. Contour lines were added together with hill-shading on the globe. The names of the main features – lands, plateaus, mountains, lowlands – plains and also some large craters are labeled. The places of landing sites of the spacecrafts are shown.

Rodionova ICC2013.pdf


A TREATMENT OF DATA BANK OF MORPHOLOGIC CATALOGUE OF MERCURIAN CRATERS.

B. D. Sitnikov., E.A. Kozlova, J.F. Rodionova.
Sternberg State Astronomical Institute, Moscow, jeanna@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia

78_Sitnikov_etal.pdf


AUTOMATIC COMPILING OF HYPSOMETRIC MAP OF A PART OF THE VENUSIAN SURFACE.

E.N. Lasarev 1, J. F. Rodionova 2,
1- Geographical faculty M.V. Lomonosov Moscow State University,
2- Sternbrg Sate Astronomical Institute, Universitetskij prospect 13, Moscow 119992, jeanna@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia

56_Lasarev_Radionova.pdf


THE NEW DATA ON THE EARLY STAGE OF DEVELOPMENT OF THE EARTH, MARS, THE MOON AND MERCURY.

A.V.Dolitsky1, R.M.Kochetkov2, E.A. Kozlova3, J.F.Rodionova3,
1 - United Institute of Physics of the Earth RAS, Moscow, av13868@comtv.ru,
2 - Moscow Technical University of communication and information, Moscow, krmkrm@rol.ru.
3 – Sternberg State Astronomical Institute, Moscow, jeanna@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia

21_Dolitsky_etal.pdf


SOME FEATURES OF THE CRATERING OF ISIDIS BASIN.

J.A.Iluhina, A.V.Lagutkina, J.F.Rodionova.
Sternberg State Astronomical Institute, Moscow University, jeanna@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia

ms035.pdf


MARS: MOVEMENT OF GEOGRAPHICAL POLES AND DEFORMATION OF ITS SURFACE.

A.V. Dolitsky 1, J. F. Rodionova 2, R M. Kochetkov 3, A. F. Ainetdinova 2
1 - United Institute of Physics of the Earth of Russian Academy of Sciences, Moscow. ab4870@mail.sitek.ru
2 – Sternberg State Astronomical Institute, Moscow. jeanna@sai.msu.ru.
3 - Moscow Technical University of communication and information, krmkrm@rol.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia

ms015.pdf


AN ANALYSIS OF THE DATA OF MARS ORBITER LASER ALTIMETER.

Rodionova J1., Iluhina J2., Michael G1,
1Sternberg State Astronomical Institute, jeanna@sai.msu.ru,
2Moscow University
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia

MS060.pdf


A HIPSOMETRICAL FEATURES OF THE LUNAR SURFACE FROM THE CLEMENTINE MISSION.

J. F. Rodionova1, O. V. Elkina2, E. A. Kozlova1, V. V.Shevchenko1, P.V. Litvin2.
1. Sternberg State Astronomical Institute, 119899, Moscow, Russia; jeanna@sai.msu.ru.
2. Moscow State University, Vorobjovy Gory, 119899, Moscow,Russia.
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia

MS059.pdf


Morphological Catalogue Of The Craters Of Mars.

J. F. Rodionova, K. I. Dekchtyareva, A. A. Khramchikhin, G. G. Michael, S. V. Ajukov, S. G. Pugacheva, V. V. Shevchenko.
Editors: V.V. Shevchenko, A.F. Chicarro. 2000.


Morphological Analysis of the Cratering of the South Pole–Aitken Basin on the Moon

Zh. F. Rodionova and E. A. Kozlova

Morphological.pdf


MORPHOLOGICAL CATALOGUE OF THE CRATERS OF THE MOON

J.F. Rodionova, A.A. Karlov, T.P.Skobeleva, E.V. Konotopskaya, V.V. Shevchenko, K.E. Kozubskiy, K.I.Dekhtyareva, T.F. Smolyakova, L.I. Tishik, E.A. Fedorova

Coordinates, diameters and morphological features of 14 923 craters of the Moon in diameters 10 km and more are available in the catalogue.


You can contact me at

Address of E-mail: jeanna@sai.msu.ru