Публикации сотрудников отдела.

Бережной А.А.


Impacts as sourcess of the exosphere on Mercury.

Alexey A. Berezhnoy a,b,c, Boris A. Klumov c
a Sternberg Astronomical Institute, Moscow State University, Universitetskij pr., 13, 119991 Moscow, Russia
b Rutgers University, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ 08854-8087, USA
c Max-Planck-Institut für Extraterrestrische Physik, D-85740 Garching, Germany
Received 29 August 2007; revised 13 January 2008.

Abstract
Chemical processes associated with meteoroid bombardment of Mercury are considered. Meteoroid impacts lead to production of metal atoms as well as metal oxides and hydroxides in the planetary exosphere. By using quenching theory, the abundances of the main Na-, K-, Ca-, Fe-, Al-, Mg-, Si-, and Ti-containing species delivered to the exosphere during meteoroid impacts were estimated. Based on a correlation between the solar photo rates and the molecular constants of atmospheric diatomic molecules, photolysis lifetimes of metal oxides and SiO are estimated. Meteoroid impacts lead to the formation of hot metal atoms (0.2-0.4 eV) produced directly during impacts and of very hot metal atoms (1-2 eV) produced by the subsequent photolysis of oxides and hydroxides in the exosphere of Mercury. The concentrations of impact-produced atoms of the main elements in the exosphere are estimated relative to the observed concentrations of Ca, assumed to be produced mostly by ion sputtering. Condensation of dust grains can significantly reduce the concentrations of impact-produced atoms in the exosphere. Na, K, and Fe atoms are delivered to the exosphere directly by impacts while Ca, Al, Mg, Si, and Ti atoms are produced by the photolysis of their oxides and hydroxides. The chemistry of volatile elements such as H, S, C, and N during meteoroid bombardment is also considered. Our conclusions about the temperature and the concentrations of impact-produced atoms in the exosphere of Mercury may be checked by the Messenger spacecraft in the near future and by BepiColombo spacecraft some years later.

IcarusCorrectedProof.pdf


Petrologic mapping of the Moon using Fe, Mg, and Al abundances.

A.A. Berezhnoy a,*, N. Hasebe a, M. Kobayashi a, G. Michael b, N. Yamashita a
a Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, 169-8555 Tokyo, Japan
b German Aerospace Centre, Institute for Planetary Research, Rutherfordstr. 2, 12489 Berlin-Adlershof, Germany
Received 16 August 2004; received in revised form 27 January 2005; accepted 1 March 2005.

Abstract
A comparison between the abundances of major elements on the Moon determined by Lunar Prospector gamma ray spectrometer and those in returned lunar samples is performed. Lunar Prospector shows higher Mg and Al content and lower Si content in western maria in comparison with the lunar sample collection. Lunar Prospector overestimated the Mg content by about 20%. There are no elemental anomalies at the lunar poles: this is additional evidence for the presence of polar lunar hydrogen. Using Mg, Fe, and Al abundances, petrologic maps containing information about the abundances of ferroan anorthosites, mare basalts, and Mgrich rocks are derived. This approach is useful for searching for cryptomaria and Mg-rich rocks deposits on the lunar surface. A search is implemented for rare rock types (dunites and pyroclastic deposits). Ca-rich, Al-low small-area anomalies are detected in the far side highlands.

7305CorrectedProof.pdf


A three end-member model for petrologic analysis of lunar prospector gamma-ray spectrometer data.

A.A. Berezhnoya,1, N. Hasebea, M. Kobayashia, G.G. Michaelb,_, O. Okudairaa, N. Yamashitaa
aAdvanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, 169-8555 Tokyo, Japan
bGerman Aerospace Centre, Institute for Planetary Research, Rutherfordstr. 2, 12489 Berlin-Adlershof, Germany
Received 24 March 2004; received in revised form 10 February 2005; accepted 20 February 2005.

Abstract
We analyze preliminary Lunar Prospector gamma-ray spectrometer data. Al-Mg and Fe-Mg petrologic maps of the Moon show that Mg-rich rocks are located in Mare Frigoris, the South Pole Aitken basin, and in some cryptomaria. Analysis of distances of Lunar Prospector pixels from three end-member plane in Mg-Al-Fe space reveals existence of Ca-rich, Al-low small-area anomalies in the farside highlands. An Mg-Th-Fe petrologic technique can be used for estimation of abundances of ferroan anorthosites, mare basalts, KREEP basalts, and Mg-rich rocks.

PSS_1833.pdf


IDENTIFICATION OF LUNAR ROCK TYPES.

A. A. Berezhnoy1,2, N. Hasebe1, M. Kobayashi1, G. Michael3 and N. Yamashita1
1Advanced Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
2Sternberg Astronomical Institute, Moscow, Russia
3German Aerospace Center, Institute for planetary research, Berlin, Germany.

Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia.

09_Berezhnoy_etal.pdf


HIGH PURITY GE GAMMA-RAY SPECTROMETER ON JAPANESE LUNAR POLAR ORBITER SELENE.

N. Hasebe1, M.-N. Kobayashi1, T. Miyachi1, O. Okudaira1, Y. Yamashita1, E. Shibamura2, T. Takashima3, A.A.Brezhnoy1,
1Advanced Research Institute for Science and Engineering, Waseda University (Tokyo 169-8555, Japan),
2Saitama Prefectural University (Koshigaya, Saitama 343-8540, Japan),
3Institute of Space and Astronautical Science, JAXA (Sagamihara, Kanagawa 229-8510, Japan),
4Sternberg Astronomical Institute, Moscow State Univ.

Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia.

28_Hasebe_etal.pdf


GAMMA RAYS FROM MAJOR ELEMENTS BY THERMAL NEUTRON CAPTURE REACTIONS:
EXPERIMENT AND SIMULATION FOR PLANETARY GAMMA-RAY SPECTROSCOPY.

N. Yamashita1, N. Hasebe1, M. -N. Kobayashi1, T. Miyachi1, O. Okudaira1, E. Shibamura2, A. A. Berezhnoy1,3,
1Advanced Research Institute for Science and Engineering, Waseda Univ., 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 Japan (nao.yamashita@toki.waseda.jp),
2Saitama Prefectural University, 3Sternberg Astronomical Institute.

Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia.

88_Yamashita et_al.pdf


Interpretation of the microwave non-thermal radiation of the Moon during impact events.

V. Grimalsky1, A. Berezhnoy2, 3, A. Kotsarenko4, N. Makarets5, S. Koshevaya6, and R. P´erez Enr´ıquez4.

1Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Puebla, Mexico
2Advanced Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
3Now at: Sternberg Astronomical Institute, Moscow University, Moscow, Russia
4Centro de Geociencias, Juriquilla, UNAM, Quer´etaro, Mexico
5Kyiv National Shevchenko University, Faculty of Physics, Kyiv, Ukraine
6Universidad Autonoma del Estado de Morelos (UAEM), CIICAp, Cuernavaca, Mexico
Received: 30 June 2004 - Revised: 23 November 2004 - Accepted: 24 November 2004 - Published: 30 November 2004.

Abstract
The results of recent observations of the nonthermal electromagnetic (EM) emission at wavelengths of 2.5 cm, 13 cm, and 21 cm are summarized. After strong impacts of meteorites or spacecrafts (Lunar Prospector) with the Moon's surface, the radio emissions in various frequency ranges were recorded. The most distinctive phenomenon is the appearance of quasi-periodic oscillations with amplitudes of 3-10K during several hours. The mechanism concerning the EM emission from a propagating crack within a piezoactive dielectric medium is considered. The impact may cause the global acoustic oscillations of the Moon. These oscillations lead to the crackening of the Moon's surface. The propagation of a crack within a piezoactive medium is accompanied by the excitation of an alternative current source. It is revealed that the source of the EM emission is the effective transient magnetization that appears in the case of a moving crack in piezoelectrics. The moving crack creates additional non-stationary local mechanical stresses around the apex of the crack, which generate the non-stationary electromagnetic field. For the cracks with a length of 0.1-1μm, the maximum of the EM emission may be in the 1-10GHz range.

NathazardsEarthSystSci2004.pdf


Possibility of the presence of S, SO2, and CO2 at the poles of the Moon.

Alexey A. Berezhnoy*, Nobuyuki Hasebe, Takuji Hiramoto
Advanced Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0071
* Also at Sternberg Astronomical Institute, Moscow State University, Moscow, Russia
Email (AB) iac02074@kurenai.waseda.jp and Boris A. Klumov Institute of Dynamics of Geospheres, Moscow, Russia
(Received 2003 March 4).

Abstract
The presence of volatiles near lunar poles is studied. The chemical composition of a lunar atmosphere temporarily produced by comet impact is studied during day and night. C-rich and long-period comets are insufficient sources of water ice on the Moon. O-rich short-period comets deliver significant amounts of H2O, CO2, SO2, and S to the Moon. An observable amount of polar hydrogen can be delivered to the Moon by single impact of O-rich short-period comet with diameter of 5 km in the form of water ice. The areas where CO2 and SO2 ices are stable against the thermal sublimation are estimated as 300 and 1500 km2, respectively. If water ice exists in the 2 cm top regolith layer CO2 and SO2 ices can be stable in the coldest parts of permanently shaded craters. The delivery rate of elemental sulfur near the poles is estimated as 106 g/year. The sulfur content is estimated to be as high as 1 wt % in polar regions. The SELENE gamma-ray spectrometer can detect sulfur polar caps on the Moon if the sulfur content is higher than 1 wt %. This instrument can check the presence of hydrogen and minerals with unusual chemical composition at the lunar poles.

PASJ2449modified.pdf


Optical spectroscopy of comet C/2000 WM1 (LINEAR) at the Guillermo Harro Astrophysical Observatory in Mexico.

Klim I.Churyumov1, Igor V.Luk'yanyk1, Alexei A.Berezhnoi2,3, Vahram H.Chavushyan2, Leo Sandoval4 and Alejandro A.Palma2,4

1Astronomical Observatory, Kyiv National Shevchenko University, Kyiv, Ukraine;
2Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla, Mexico;
3Sternberg Astronomical Institute, Moscow, Russia;
4Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
March 24, 2002.

Abstract
Preliminary analysis of middle resolution optical spectra of comet C/2000 WM1 (LINEAR) obtained on November 22, 2001 is given. The emission lines of the molecules C2, C3, CN, NH2, H2O+ and presumably CO (Asundi and triplet bands), C-2 were identified in these spectra. By analyzing the brightness distributions of the C2, C3, CN emission lines along the spectrograph slit we determined some physical parameters of these neutral molecules - the velocity of expansion of molecules within the coma and their lifetimes. The Franck-Condon factors for the CO Asundi bands and C-2 bands were calculated by using a Morse potential model.

EarthMoonPlanets2002.pdf


Radio Emission of the Moon before and after the Lunar Prospector impact, Proceedings of the Fourth International Conference on Exploration and Utilisation of the Moon.

Berezhnoi A.A., Gusev S.G., Khavroshkin O.B., Poperechenko B.A., Shevchenko V.V., Tzyplakov V.A.

p. 179-181, ESTEC, Noordwijk, The Netherlands, 10-14 July 2000.

LP-Moon.pdf


Photochemical Model of Impact-Produced Lunar Atmosphere, Proceedings of the Fourth International Conference on Exploration and Utilisation of the Moon.

Berezhnoi A.A., Klumov B.A.

p. 175-178, ESTEC, Noordwijk, The Netherlands, 10-14 July 2000.

ILEWG4.pdf


Автореферат кандидатской диссертации Бережного А.А.

Более подробное описание моих научных исследований и научное сообщение о моей работе за 2000 год содержится на сайте информационной системы "Наука и инновации".

aref.doc
aref.pdf


Лунный лед: можно ли определить его происхождение?

Бережной А.А., Клумов Б.А.

Письма в ЖЭТФ, Т. 68, N2, с. 150-154, 1998.

Эту статью можно найти на https://link.springer.com/article/10.1134/1.567840


Столкновение кометы с Юпитером: определение глубины проникновения осколков по молекулярным спектрам.

Бережной А.А., Клумов Б.А., Фортов В.Е., Шевченко В.В.

Письма в ЖЭТФ, Т. 63, N6, с. 387-391, 1996.

Эту статью можно найти на https://link.springer.com/article/10.1134/1.567039


Бусарев В.В.


Первый межзвездный астероид.

Бусарев В.В.

Доклад на Междисциплинарном семинаре Евроазийского Астрономического Общества (Москва, ГАИШ МГУ, 24 января 2018 г.)

Аннотация:
Первый астероид, пришедший в Солнечную систему по гиперболической орбите с эксцентриситетом 1.188 ± 0.016 из межзвездного пространства со стороны Северного полюса, был обнаружен 19 октября 2017 американским автоматическим 1.8-м телескопом Pan-STARRS1 на Гавайских островах. Ему присвоили номер 1I/2017 U1 и даже уже дали имя собственное – Оумуамуа (что означает «посланник» в пер. с гавайского). Как оказалось, этот астероид прошел перигелий 9 сентября на расстоянии 0.254 ± 0.002 а.е. от Солнца, и теперь быстро уходит из Солнечной системы. Наблюдения Оумуамуа, которые успели провести на крупнейших наземных телескопах, показывают, что он имеет «рекетоообразную» форму (~400 х 30 м), не проявляет какой-либо кометной активности и имеет красноватый оттенок. В докладе представлены не только предварительные результаты исследований «межзвездного скитальца», но также и ранее полученные автором с коллегами наблюдательные и экспериментальные данные о похожих небесных объектах, иллюстрирующие необычные свойства Оумуамуа.


Оценка состава вещества и обнаружение сублимационной активности астероидов 145 Адеоны, 704 Интерамнии, 779 Нины и 1474 Бейры.

Бусарев В.В., Барабанов С.И., Пузин В.Б.

Астрон. вестн., 2016, т. 50, №4, с. 300-312.

Спектрофотометрические наблюдения в диапазоне 0.35–0.92 мкм 145 Адеоны, 704 Интерамнии, 779 Нины и 1474 Бейры, астероидов близких примитивных типов, позволили нам обнаружить в их спектрах отражения похожие минералогические полосы поглощения с центрами у 0.38, 0.44 и 0.67– 0.71 мкм. На этих же астероидах мы впервые зарегистрировали спектральные признаки одновременной сублимационной активности (наличие максимумов в спектрах отражения у ~0.35–0.60 мкм у Адеоны, Интерамнии и Нины и вблизи ~0.55–0.75 мкм – у Бейры), которую мы связываем с их малыми гелиоцентрическими расстояниями и, соответственно, с высокой инсоляцией поверхности.

АВ-16-2.pdf


Новые спектры отражения 40 астероидов: сравнение с предшествующими результатами и интерпретация.

Бусарев В.В.

Астрон. вестн., 2016, т. 50, №1, с. 15-26.

В статье представлены и обсуждаются избранные спектры отражения 40 астероидов Главного пояса, полученные автором в Крымской лаборатории ГАИШ МГУ в 2003–2009 гг. Целью работы является поиск новых спектральных особенностей астероидов, характеризующих состав их вещества. При сравнении полученных результатов с более ранними данными сделан вывод о значительных неоднородностях в распределении химико-минералогического состава поверхностного вещества у ряда малых планет (10 Гигии, 13 Эгерии, 14 Ирены, 21 Лютеции, 45 Евгении, 51 Немаузы, 55 Пандоры, 64 Ангелины, 69 Гесперии, 80 Сафо, 83 Беатрисы, 92 Ундины, 129 Антигоны, 135 Герты и 785 Зветаны), проявляющихся при разных фазах вращения.

AB-15-1_Bus.pdf


Особенности спектральных характеристик Европы, Ганимеда и Каллисто.

Бусарев В. В.
Астрономический вестник, 2014 г., т. 48, №1, c. 50-63.

Аннотация
В статье обсуждаются результаты наземной спектрофотометрии ледяных галилеевых спутников Юпитера, Европы, Ганимеда и Каллисто, выполненной в марте 2004 г. на 1.25-м телескопе с ПЗС-спектрометром Крымской лаборатории ГАИШ МГУ в диапазоне 0.4-0.92 мкм. Отмечается, что расчетные спектры отражения спутников в основном согласуются с аналогичными данными их предшествующих наземных наблюдений и исследований с помощью космических аппаратов Voyager и Galileo. В представленной работе осуществлена идентификация новых слабых полос поглощения (с относительной интенсивностью ~3-5%) в спектрах отражения этих тел с учетом лабораторных измерений (Landau et al., 1962; Ramaprasad et al., 1978; Burns, 1993; Busarev et al., 2008). Установлено, что в спектрах всех рассматриваемых объектов имеются слабые полосы поглощения адсорбированного в водяной лед молекулярного кислорода как вероятное следствие радиационной имплантации ионов О+ в поверхностное вещество спутников в магнитосфере Юпитера. В то же время на Ганимеде и Каллисто обнаружены спектральные особенности разновалентных форм железа (Fe2+ и Fe3+), типичные для гидратированных силикатов, а на Европе – вероятные признаки метана предположительно эндогенного происхождения, входящего в состав водяного льда. Проведено сравнение спектров отражения ледяных галилеевых спутников со спектрами отражения астероидов 51 Немаузы (С-тип) и 92 Ундины (Х-тип).

Bus_AV-14(abs).doc
АВ-14(Бусарев).pdf


ЧЕЛЯБИНСКИЙ БОЛИД КАК НАПОМИНАНИЕ О ГЛАВНОМ ПРОЦЕССЕ СОЛНЕЧНОЙ СИСТЕМЫ.

В.В.Бусарев (ГАИШ МГУ, Москва)
(предварительный вариант статьи, опубликованной в №2(50) 2013 г. журнала "Наука из первых рук").
Chelyabinskiy_bolid.doc


Докторская диссертация на тему:

"ИЗУЧЕНИЕ ПРИРОДЫ АСТЕРОИДОВ МЕТОДАМИ СПЕКТРОФОТОМЕТРИИ".

Бусарев В.В.

Автореферат
диссертации на соискание ученой степени доктора
физико-математических наук.

Abstract.pdf


О НЕОДНОРОДНОСТИ ВЕЩЕСТВА АСТЕРОИДОВ 10 ГИГИИ, 135 ГЕРТЫ И 196 ФИЛОМЕЛЫ ПО СПЕКТРАМ ОТРАЖЕНИЯ.

© 2011 г. В. В. Бусарев.

Государственный астрономический институт им. П.К. Штернберга МГУ, Москва
Поступила в редакцию 21.12.2009 г.

АВ-11(Бусарев).pdf


СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ АСТЕРОИДОВ 21 ЛЮТЕЦИЯ И 4 ВЕСТА КАК ОБЪЕКТОВ КОСМИЧЕСКИХ МИССИЙ.

В. В. Бусарев, © 2010 г.

Государственный астрономический институт им. П.К. Штернберга МГУ, Москва
Поступила в редакцию 21.12.2009 г.

АВ-10(Бусарев).pdf


Астрофизические методы исследования Луны и малых небесных тел.

В.В.Бусарев, Государственный астрономический институт им.П.К.Штернберга, 2009.

Astrofiz methods.pdf


RESULTS OF REFLECTANCE SPECTRAL, MÖSSBAUER, X-REY AND ELECTRON MICROPROBE INVESTIGATIONS OF TERRESTRIAL SERPENTINE SAMPLES.

V. V. Busarev1, M. V. Volovetskij2, M. N. Taran3, V. I. Fel’dman4, T. Hiroi5 and G. K. Krivokoneva6
1Sternberg State Astronomical Institute, Moscow University, 119992 Moscow, Russia Federation (RF), e-mail: busarev@sai.msu.ru ;
2Division of Mossbauer Spectroscopy, Physical Department of Moscow State University, 119992 Moscow, RF
3 Institute of Geochemistry, Mineralogy and Ore Formation, Academy of Sciences of Ukraine, 03142 Kiev, Ukraine;
4Division of Petrology, Geological Department of Moscow State University, 119992 Moscow, RF;
5Department of Geological Sciences, Brown University, Providence, Rhode Island 02912;
6All-Russia Research Institute of Mineral Resources (VIMS), 119017 Moscow, RF.
48th Vernadsky-Brown Microsymposium on Comparative Planetology, October 20-22, 2008, Moscow, abstract No. 6.

V-B- 2008(Bus_etal).doc


Спектральный и спектрально-частотный методы исследования безатмосферных тел Солнечной системы.

В.В.Бусарев, В.В.Прокофьева-Михайловская, В.В.Бочков.
УСПЕХИ ФИЗИЧЕСКИХ НАУК, Том 177, №6, Июнь 2007г.

УФН-07(Бус-Прок-Боч).pdf


ИССЛЕДОВАНИЕ СТРУКТУРЫ ПОВЕРХНОСТИ М-АСТЕРОИДА 21 ЛЮТЕЦИЯ СПЕКТРАЛЬНЫМ И ЧАСТОТНЫМ МЕТОДАМИ.

В. В. Прокофьева*, В. В. Бочков*, В. В. Бусарев**
*Научно-исследовательский институт Крымская астрофизическая обсерватория, Украина; e-mail: prok@crao.crimea.ua
**Государственный астрономический институт им. П.К. Штернберга, Москва, Россия.
«Астрономический вестник», т. 39, №5, с. 457-468, 2005.

АВ-05(Прок-Боч-Бус).doc


Астероиды неоднозначных спектральных типов: 11 Партенопа, 198 Ампелла, 201 Пенелопа и 21 Лютеция.

Бусарев В. В., ГАИШ МГУ, E-mail: busarev@sai.msu.ru
Труды конференции «Околоземная астрономия 2007» (под ред. Л.В. Рыхловой и В.К. Тарадия), Изд. М. и В. Котляровы, 2008, с. 79-84.

Выполненные нами в разные годы спектральные исследования показывают, что S-астероиды 11 Партенопа и 198 Ампелла, M-астероиды 201 Пенелопа и 21 Лютеция имеют особенности состава вещества, не согласующиеся с их спектральными типами.

OZA2007(Busarev).pdf


HYDRATED SILICATES ON EDGEWORTH-KUIPER OBJECTS – PROBABLEWAYS OF FORMATION.

V. V. BUSAREV, Sternberg State Astronomical Institute, Moscow University, Russian Federation (RF) (E-mail: busarev@sai.msu.ru);
V. A. DOROFEEVA, Vernadsky Institute of Geochemistry, Russian Academy of Sciences (RAS), Moscow, RF;
A. B. MAKALKIN, Institute of Earth Physics, RAS, Moscow, RF.

Abstract.
Visible-range absorption bands at 600–750 nm were recently detected on two Edgeworth-Kuiper Belt (EKB) objects (Boehnhardt et al., 2002). Most probably the spectral features may be attributed to hydrated silicates originated in the bodies. We consider possibilities for silicate dressing and silicate aqueous alteration within them. According to present models of the protoplanetary disk, the temperatures and pressures at the EKB distances (30–50 AU) at the time of formation of the EKB objects (106 to 108 yr) were very low (15–30 K and 10−9–10−10 bar). At these thermodynamic conditions all volatiles excluding hydrogen, helium and neon were in the solid state. An initial mass fraction of silicates (silicates/(ices + dust)) in EKB parent bodies may be estimated as 0.15–0.30.
Decay of the short-lived 26Al in the bodies at the early stage of their evolution and their mutual collisions (at velocities ≥1.5 km s−1) at the subsequent stage were probably two main sources of their heating, sufficient for melting of water ice. Because of the former process, large EKB bodies (R ≥ 100 km) could contain a large amount of liquid water in their interiors for the period of a few 106 yr. Freezing of the internal ocean might have begun at ≈ 5 × 106 yr after formation of the solar nebula (and CAIs). As a result, aqueous alteration of silicates in the bodies could occur.
A probable mechanism of silicate dressing was sedimentation of silicates with refractory organics, resulting in accumulation of large silicate-rich cores. Crushing and removing icy covers under collisions and exposing EKB bodies’ interiors with increased silicate content could facilitate detection of phyllosilicate spectral features.

EM&P2003(Bus-Dor-Mak).pdf


SPECTRAL SIGNS OF CARBONACEOUS CHONDRITIC MATERIAL ON (21) LUTETIA.

V.V. Busarev, Sternberg Astronomical Institute (SAI), Moscow University, Universitetskij pr., 13, Moscow, 119992
Russia, busarev@sai.msu.ru.

ACM08(Bus).pdf


A COMBINED SPECTRAL-FREQUENCY METHOD OF INVESTIGATIONS OF SMALL OR DISTANT PLANETS.

V. V. Busarev1, V. V. Prokof’eva2, and V. V. Bochkov2
1 Sternberg State Astronomical Institute, Moscow University, Universitetskij pr., 13, Moscow 119992, Russian Federation, e-mail: busarev@sai.msu.ru;
2 Research Institute Crimean Astrophysical Observatory, p/o Nauchnyi, Crimea 334413, Ukraine, e-mail: prok@crao.crimea.ua

m44_14_busarev_etal.pdf


POSSIBLE SPECTRAL SIGNS OF SERPENTINES AND CHLORITES IN REFLECTANCE SPECTRA OF CELESTIAL SOLID BODIES.

V. V. Busarev1, M. N. Taran2, V. I. Fel’dman3 and V. S. Rusakov4
1 Lunar and Planetary Department, Sternberg State Astronomical Institute, Moscow State University, 119992 Moscow, Universitetskij pr., 13, Russian Federation (RF); e-mail: busarev@sai.msu.ru;
2 Department of Spectroscopic Methods, Institute of Geochemistry, Mineralogy and Ore Formation, Academy of Sciences of Ukraine, 03142 Kiev, Palladina pr., 34, Ukraine;
3 Division of Petrology, Geological Department of Moscow State University, 119992 Moscow, RF;
4 Division of Mossbauer Spectroscopy, Physical Department of Moscow State University, 119992 Moscow, RF.

Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia

15_Busarev_etal.pdf


Where Some Asteroid Parent Bodies.

V.V.Busarev.
35th Lunar and Planetary Science Conference, 2004, Houston, Texas, Abstract 1026.

LPSC2004a.pdf


FORMATION OF HYDRATED SILICATES IN EDGEWORTH-KUIPER BELT OBJECTS.

A. B. Makalkin, Institute of Earth Physics, RAS, Moscow, RF (e-mail: makalkin@uipe-ras.scgis.ru); Dorofeeva, V. A. Vernadsky Institute of Geochemisry, (RAS), Moscow, RF (e-mail: dorofeeva@geokhi.ru); V. V. Busarev, Sternberg State Astronomical Institute, Moscow University, RF; (e-mail: busarev@sai.msu.ru) Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms063.pdf


Где могут быть скрыты  родительские тела астероидов?

Бусарев В.В.

Terskol.pdf


SOME OBSERVATIONAL INDICATIONS OF THE HISTORY AND SRUCTURE OF OUR PLANETARY SYSTEM.

V.V. Busarev

Sternberg State Astronomical Institute, Moscow University, Moscow, Russian Federation; e-mail: busarev@sai.msu.ru.

Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia.

MS058.pdf


OXIDIZED AND HYDRATED SILICATES ON M- AND S- ASTEROIDS: SPECTRAL INDICATIONS.

V. V. Busarev

32nd Lunar and Planetary Science Conference, March 12-16, 2001, Houston, Texas, Abstract 1927.

LPSC2001a.pdf


Научно-популярные обзоры

Астероиды.

Кометы.

Метеоры и метеориты.


Лазарев Е.Н.


Составление сравнительно-планетологического тематического атласа "Рельеф планет Земной группы и их спутников".

М.С.Лазарева1, Е.Н.Лазарев1,2, Ж.Ф. Родионова2.

1 Географический факультет МГУ им. М.В.Ломоносова
2 Государственный астрономический институт им. П.К. Штернберга МГУ им. М.В.Ломоносова.

lazareva_et_al_2013.pdf


КАРТА РЕЛЬЕФА ВЕНЕРЫ.

Лазарев Е. Н., Родионова Ж. Ф., Шевченко В. В.

RELIEF MAP OF VENUS3.doc


Карта рельефа Венеры.

Лазарев Е.Н., Родионова Ж.Ф., Шевченко В.В.

Издана новая Карта рельефа Венеры в масштабе 1:45 000 000, составленная в ГАИШ МГУ при участии кафедры картографии и геоинформатики на основе данных КА «Магеллан» о высотах более 6 000 000 точек поверхности.


РАЗРАБОТКА МЕТОДИКИ И ГИС-ТЕХНОЛОГИИ СОЗДАНИЯ ГИПСОМЕТРИЧЕСКИХ КАРТ ЛУНЫ ПО ДАННЫМ КОСМИЧЕСКИХ СЪЕМОК.

Лазарев Евгений Николаевич
Автореферат
диссертации на соискание ученой степени кандидата технических наук
Москва – 2008 г.

Автореферат.pdf


ГЕНЕРАЛИЗАЦИЯ ТОЧЕЧНЫХ МАССИВОВ ДАННЫХ ПОСРЕДСТВОМ ИСПОЛЬЗОВАНИЯ ДОПОЛНИТЕЛЬНЫХ ВОЗМОЖНОСТЕЙ ГЕОИНФОРМАЦИОННЫХ СИСТЕМ.

Аспирант Е.Н. Лазарев
Московский Государственный Университет Геодезии и Картографии.

ГЕНЕРАЛИЗАЦИЯ ТОЧЕЧНЫХ МАССИВОВ ДАННЫХ ПОСРЕДСТВОМ ИСПОЛЬЗОВАНИЯ ДОПОЛНИТЕЛЬНЫХ ВОЗМОЖНОСТЕЙ ГЕОИНФОРМАЦИОННЫХ СИСТЕМ.pdf


История картографирования Марса.

Лазарев Евгений Николаевич.

История картографирования Марса.pdf


AUTOMATED CREATION OF THE LUNAR HYPSOMETRIC MAP: TECHNIQUES OF COMPILING.

1Shevchenko V.V., 2Shingareva K.B., 1,2Lazarev E.N , 1Rodionova J.F.
1Sternberg State Astronomical Institute (MSU) 119899, 13, Universitetskiy prospect, Moscow, Russia,
2Moscow State University for Geodesy & Cartography (MIIGAiK), 105064, 4, Gorokhovskiy pereulok, Moscow, Russia,  zhecka@inbox.ru.

Automated creation of the lunar hypsometric map techniques of compiling.pdf


RASTER VENUS AND LUNAR MAPS AS A SOURCE FOR OBTAINING VECTOR TOPOGRAPHIC DATA

Evgeniy Lazarev, Janna Rodionova
Evgeniy Lazarev; Moscow State University of Geodesy and Cartography (MIIGAiK);
121614, Osenniy bulvar, Moscow, Russia;
+7(495)412-6176, zhecka@inbox.ru
Dr. Janna Rodionova; Sternberg State Astronomical Institute;
119899, 13, Universitetskiy prospect, Moscow, Russia, jeanna@sai.msu.ru.

Abstract
The new hypsometric maps of Venus and the Moon should improve and accelerate studying the surfaces of these planets and relief-forming processes. Additionally, these maps should be useful for students and scientists. The hypsometric map of Venus is produced in Lambert equal-area azimuth projection. Its height contours are obtained using the Magellan altitude data. To create Lunar Subpolar relief map the authors obtained heights from the A. Cook et.al. raster image of South Lunar Subpolar region (latitudes from -60° to -90°) being constructed in stereographic projection. [A.C. Cook, T.R. Watters, M.S. Robinson et.al. (2000) JGR, Vol.105, E5, 12023-12033]. Morphometric investigations of Venus and Lunar South Pole region surface have been fulfilled using our databases. The height profiles of some lunar craters being situated here and detailed profiles of the whole this area created by us describe the features of this region surface with the high resolution up to 100 meters.

RASTER VENUS AND LUNAR MAPS AS A SOURCE FOR OBTAINING VECTOR TOPOGRAPHIC DATA.pdf


Гипсометрическая карта Венеры.

Automatic creation of the hypsometric map of Venus_MAP.pdf


ГИПСОМЕТРИЧЕСКАЯ КАРТА ВЕНЕРЫ: МЕТОДЫ СОЗДАНИЯ И ИСПОЛЬЗОВАНИЯ.

Аспирант Е.Н. Лазарев
Московский Государственный Университет Геодезии и Картографии.

Гипсометрическая карта Венеры - методы создания и использования.pdf


THE LUNAR SUBPOLAR RELIEF MAP: THE WAYS AND TECHNIQUES OF COMPILING AND USING.

Evgeniy Lazarev1,2, Zhanna Rodionova2
1Moscow State University of Geodesy and Cartography (MIIGAiK) 105064, Gorokhovskiy pereulok, 4, Moscow, Russia zhecka@inbox.ru
2Sternberg State Astronomical Institute 119991, Universitetskiy prospect, 13, Moscow, Russia jeanna@sai.msu.ruю

THE LUNAR SUBPOLAR RELIEF MAP THE WAYS AND TECHNIQUES OF COM.pdf


AUTOMATIC CREATION OF THE HYPSOMETRIC MAP OF VENUS.

E. N. Lazarev1, 2, J. F. Rodionova2.
1Moscow State University of Geodesy and Cartography, 4 Gorokhovskiy per., Moscow 105064, Russia, e-mail: zhecka@inbox.ru,
2Sternberg State Astronomical Institute, 13 Universitetskiy pr., Moscow 119892, Russia, e-mail: jeanna@sai.msu.ru.

Automatic creation of the hypsometric map of Venus.pdf


Maйкл Г.Г.


COPRATES CHASMA NORTH WALL INTERIOR LAYERED DEPOSIT: LAYER MEASUREMENTS AND COMPARISON WITH JUVENTAE CHASMA ILDS USING MARS EXPRESS HIGH RESOLUTION STEREO CAMERA (HRSC) DERIVED TOPOGRAPHY.

G. Michael 1, E. Hauber1, K. Gwinner1, R. Stesky2, F. Fueten3, D. Reiss1, H. Hoffmann1, R. Jaumann1, G. Neukum4, T. Zegers5, and the HRSC Co-Investigator Team
1Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
2Pangaea Scientific, Brockville, Ontario, Canada
3Department of Earth Sciences, Brock University, St. Catharines, Ontario, Canada
4Remote Sensing of the Earth and Planets, Freie Universitaet, Berlin, Germany
5ESTEC, ESA, Noordwijk, The Netherlands
Brown University - Vernadsky Institute Microsymposium 42, October 10-12, 2005, Moscow, Russia.

m42_50.pdf


THE MORPHOMETRIC ANALISYS OF THE FEATURES OF MARTIAN CRATERS (10 - 20 km).

I.A. Ushkin11, G. G. Michael2.
1. Moscow State University, Vorobjovy Gory, 119899, Moscow, Russia, gray_pigeon@mail.ru .
2. ESA, Noordwijk, the Netherlands. greg.michael@rssd.esa.int.
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia.

81_Ushkin_Michael.pdf


ESA SMART-1 MISSION TO THE MOON.

B.H. Foing1, G. Michael1, G.R. Racca2, A. Marini2, M. Grande, J. Huovelin, J.-L. Josset, H.U. Keller, A. Nathues, D. Koschny, A. Malkki (SMART-1 Science and Technology Working Team)
1ESA Research and Scientific Support Dept., ESTEC/SCI-S
2ESA Science Projects Dept., ESTEC/SCI-PD Bernard.Foing@esa.int
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms019.pdf


SURVEY OF MARS CRATER TOPOGRAPHY FROM MOLA DATA.

Michael G. G., European Space Agency, Research and Scientific Support Department, ESA/ESTEC, Noordwijk, The Netherlands, greg.michael@esa.int
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms067.pdf


BEAGLE-2 LANDING SITE ATLAS.

Michael G. G.1, Chicarro A. F.1, Rodionova J. F.2, Shevchenko V. V.2, Iluhina J.2, Kozlova E. A.2
1European Space Agency, Research and Scientific Support Department, ESA/ESTEC, Noordwijk, The Netherlands
2Sternberg Astronomical Institute, Moscow, greg.michael@esa.int
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms068.pdf


THE MORPHOMETRIC ANALISYS OF THE FEATURES OF MARTIAN CRATERS.

I.A. Ushkin1, G. G. Michael2, E.A. Kozlova3 .
1. Moscow State University, Vorobjovy Gory, 119899, Moscow, Russia, gray_pigeon@mail.ru .
2. ESA, Noordwijk, the Netherlands. greg.michael@rssd.esa.int
3. Sternberg State Astronomical Institute, 119899, Moscow, Russia.
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms090.pdf


Пугачева С.Г.


Каталог названий рельефа поверхности Меркурия.
(Изд. 2-е, испр. и доп., 2016 г.)

С.Г. Пугачева, Ж.Ф. Родионова, Т.П. Скобелева, Е.А. Феоктистова, В.В. Шевченко.

В каталоге приведены названия морфологических типов рельефа Меркурия на русском и латинском языках, даны координаты объектов в гермесографической системе координат, а также исторические и библиографические сведения о происхождении названий.


Каталог названий рельефа поверхности Меркурия.

Пугачева С.Г., Скобелева Т.П., Шевченко В.В.

В каталоге приведены названия морфологических типов рельефа Меркурия на русском и латинском языках, даны координаты объектов в гермесографической системе координат, а также исторические и библиографические сведения о происхождении названий.


THE CHEMICAL COMPOSITION OF REGOLITH AT THE MOON’S SOUTH POLE, ACCORDING TO DATA OF LUNAR PROSPECTOR AND LUNAR RECONNAISSANCE ORBITER MISSIONS.

S. G. Pugacheva and V. V. Shevchenko, Sternberg State Astronomical Institute, Moscow University, 13 Universitetsky pr., 119992 Moscow, Russia, pugach@sai.msu.ru.

Pugacheva LPS 41.pdf


НОМЕНКЛАТУРНЫЙ РЯД НАЗВАНИЙ ЛУННОГО РЕЛЬЕФА

С. Г. Пугачева, Ж. Ф. Родионова, В. В. Шевченко, Т.П.Скобелева, К. И. Дехтярева, А. П. Попов.
Государственный Астрономический институт им. П.К. Штернберга, МГУ

Каталог лунной номенклатуры содержит список названий деталей лунного рельефа. Для обозначения форм рельефа поверхности Луны установлена единая система номенклатурных терминов, которые утверждены Генеральной ассамблеей Международного астрономического Союза (МАС).
В каталоге «Номенклатурный ряд названий лунного рельефа» приведены 1933 названия деталей рельефа Луны на русском и латинском языках. Каталог построен на основе справочника именованных лунных объектов, утвержденного Международным Астрономическим Союзом (IAO/WGPSN). Список номенклатурного ряда названий расположен в интернете на сайте Геологической службы США (USGS) [http://planetarynames.wr.usgs.gov/].

Nomenclature of lunar names.doc
Nomenclature of lunar names.pdf


Structure of the South Pole–Aitken Lunar Basin

V. V. Shevchenko, V. I. Chikmachev, and S. G. Pugacheva
Sternberg State Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, Moscow, 119899 Russia
Received April 10, 2007

Abstract
The hypsometric map and the basin height profiles, for the first time relying upon a spherical daturence surface, have been constructed based on the generalization of the heights measured within the hemisphere including the ring structure of the South Pole–Aitken basin. The distribution of the major chemical elements (Fe and Th), depending upon the structure height levels, has been obtained. The relationship between these lunar rock indicators and the height levels of the rock preferential distribution has been revealed. The outer basin ring has been distinguished and the ring structure of the central basin depression has been revealed against a combined hypsometric and geochemical background. A total basin diameter of about 3500 km has been reliably determined for the first time. A unique feature of the basin structure consists in that the arrangement of the basin inner rings does not show a central circular symmetry, which can indicate that a hypothetical impactor moved along the trajectory (or orbit) oriented almost normally to the ecliptic plane. In combination with the revealed very small depth–diameter ratio in the initial basin structure, this circumstance makes it possible to put forward the hypothesis that a comet impact produced the South Pole–Aitken basin.

SSR447.pdf


THE PHOTOMETRIC RESEARCHS OF THE MERCURY’S SURFACE BY MEANS OF DIGITAL MODELS.

S.G. Pugacheva. Sternberg State Astronomical Institute, Moscow
University, 13 Universitetsky pr., 119992 Moscow, Russia, pugach@sai.msu.ru.

m44_70_pugacheva.pdf


THE PARAMETERS INVOLVED IN HAPKE’S MODEL FOR ESTIMATION OF THE COMPOSITION OF THE EJECTA LUNAR TERRAINS.

S.G.Pugacheva, V.V.Shevchenko.
Sternberg State Astronomical Institute, Moscow University, 13 Universitetsky pr., 119992 Moscow, Russia, pugach@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 42, October 10-12, 2005, Moscow, Russia

m42_60.pdf


PHYSICAL AND MINERALOGY CHARACTERISTICS OF THE LUNAR REGOLITH IN THE AREAS OF THE THERMAL ANOMALIES.

S. G. Pugacheva, V.V. Shevchenko. Sternberg State Astronomical Institute, Moscow University, Russia, pugach@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia

ms080.pdf


ANOMALIES OF THE MOON’S THERMAL EMISSION IN THE IR SPECTRAL RANGE (10.5 - 12.5 micron).

S. G. Pugacheva. Sternberg State Astronomical Institute, Moscow, 119899, Russia, pugach@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia

MS058.pdf


"Проекты и основные направления научных исследований".

С.Г.Пугачева


Родионова Ж.Ф.


ОБЗОРНАЯ КАРТА ЛУНЫ 2024

Гришакина Е.А., Родионова Ж.Ф., Шевченко В.В., Слюта Е.Н.

Абстракт. В процессе составления «Обзорной карты Луны 2024» масштаба 1:13 000 000 были изучены характерные особенности лунного рельефа, отобраны и обработаны данные лазерного высотомера LOLA космического аппарата LRO, которые были использованы в качестве исходной информации. При картографировании использовано программное обеспечение ESRI ArcGIS 10.1. В ходе разработки цветовой шкалы для отображения высот на карте были учтены различия в рельефе видимого и обратного полушарий Луны, и решена задача отображения характерных форм лунного рельефа. На карте приведены названия лунных морей, заливов, озер, гор, долин, кратеров и других образований на латинском и русском языках, показаны места посадок космических аппаратов (КА) и пилотируемых кораблей Аполлон. На «Обзорной карте Луны 2024», в отличие от предыдущей версии «Обзорной карты Луны 2022», показаны места посадок индийского КА “Сhandrayaan 3”, японского КА “SLIM” и китайского КА “Chang’e 6”.

LUNAR SURVEY MAP 2024.tif


Каталог кратеров Меркурия

Е. А. Феоктистова, Ж. Ф. Родионова, И. Ю. Завьялов, Н. А. Козлова

Абстракт. Новый Морфологический каталог кратеров Меркурия был создан в ГАИШ МГУ совместно с МИИГАиК по данным, полученным в ходе полетов КА «MESSENGER» и КА «Маринер-10». Новый каталог включает информацию о координатах, диаметрах и морфологии 12 365 кратеров с диаметрами ≥ 10 км. Для создания каталога использовались координаты и размеры кратеров Меркурия из Каталога, подготовленного в Университете Брауна, США, содержащего 8 775 кратеров диаметром ≥ 20 км, глобальная мозаика изображений поверхности Меркурия по данным КА “MESSENGER” и изображения полученные КА «Маринер-10». Морфологическое описание 12 365 кратеров выполнено в ГАИШ МГУ.

Абстракт для каталога Меркурия.docx

Каталог кратеров Меркурия по данным КА MESSENGER для сайта.xlsx

Обновлен 07.05.2024


СОЗДАНИЕ КАРТЫ ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ

Гришакина Е.А., Родионова Ж.Ф., Слюта Е.Н., Феоктистова Е.А., Шевченко В.В.
ABSTRACT-BOOK of the Fourteenth Moscow Solar System Symposium. October 9-13.2023. 14 MS-3-MN-PS-13.

Абстракт. Описана методика создания Карты приполярных областей Луны 1:5 000 000 масштаба, ограниченной параллелями +/- 60°. Условным знаком на карте показано место мягкой посадки КА «Чандраян 3». Количество кратеров диаметром 10 км и более в северной полярной области составляет 2032 кратера, а в южной области 1320 кратеров. Показано, что кратеры южной полярной области в среднем на 1-2 км глубже, чем кратеры северной полярной области. Приведены графики зависимости числа кратеров от соотношения глубина-диаметр в северной и южной полярных областях.

14M-S3_New.docx


КАРТА ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ ОТ ПАРАЛЛЕЛЕЙ +/-55°

Гришакина Е.А., Родионова Ж.Ф., Феоктистова Е.А., Слюта Е.Н., Шевченко В.В.

Абстракт. Карта приполярных областей Луны составлена в Полярной стереографической проекции в масштабе 1:6 000 000. Северная и южная приполярные области ограничены параллелями +/- 55° для того, чтобы показать место падения аппарата «Луна 25». Рельеф лунной поверхности показан методом послойной многоцветной «отмывки» на основе цифровой модели по данным лазерного альтиметра LOLA КА «Lunar Reconnaissance Orbiter». Высоты отсчитаны от сферы радиусом 1737,4 км. Наименования форм рельефа Луны на латинском языке нанесены на карту согласно решениям МАС и на русском языке в соответствие с книгой «Наименования форм рельефа Луны» под общей редакцией В.В. Шевченко, 2022 г. Карта Филипа Стука «Lunar Landing and Impact Sites» использована для показа мест падений КА “Lunar Prospector”, “Chandrayaan 1, 2”, “LCROSS”, “Kaguya”, “GRAIL A, GRAIL B”. Место мягкой посадки КА «Чандраян 3» отмечено на карте флажком.

Составитель: Гришакина Е.А.
Редакторы: Родионова Ж.Ф., Феоктистова Е.А.
Научные редакторы: Шевченко В.В., Слюта Е.А.
Карта составлена Государственным астрономическим институтом им. П.К. Штернберга МГУ и Институтом геохимии и аналитической химии им. В.И. Вернадского РАН в 2023 г.

Moon_55_2023YFS_500dpi.pdf


КАРТА ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ

Гришакина Е.А., Родионова Ж.Ф., Феоктистова Е.А., Слюта Е.Н., Шевченко В.В.
Государственный астрономический институт им. Штернберга МГУ,
Институт геохимии и аналитической химии им. Вернадского РАН.

Абстракт. Карта приполярных областей Луны, ограниченных параллелями +/- 60°, составлена в масштабе 1:5 000 000 в полярной стереографической проекции. Эти районы представляют особый интерес, поскольку там в постоянно затененных областях в глубоких кратерах был обнаружен лед. Высоты лунной поверхности определены с высокой точностью альтиметрами КА «Кагуя» и «Лунар реконнеисенс орбитер» (LRO) Для отображения рельефа на карте нами использовалась цифровая модель с разрешением 0,5 км на пиксель. Высоты на карте определены относительно сферы со средним радиусом 1737,4 км. Перепад высот на Луне составляет около 20 км. Шкала высот в приполярных районах представлена 17 уровнями, отражающими разные высоты и глубины лунной поверхности. Трехмерное отображение поверхности показано методом цветовой «отмывки» в соответствии с цифровой моделью Гришакиной Е.А. При этом использовалось программное обеспечение ESRI ArcGIS 10.1. На карте приполярных областей подписаны все собственные наименования кратеров на латинском языке, принятом Международным астрономическим союзом (МАС) и русском языке. Условным знаком показано место мягкой посадки индийского спускаемого аппарата Чандрайян-3, впервые севшего вблизи южного полюса Луны 23 августа 2023 года. Карта приполярных областей Луны представлена в двух форматах для печати: А1 и А3.

Moon_Polar_А1R.jpg

Moon_Polar_А3R3.jpg


Исследование и картографирование Луны космическими аппаратами и кораблями

Родионова Ж.Ф.1, Шевченко В.В.1, Гришакина Е.А.2, Слюта Е.Н.2
1 - Государственный астрономический институт имени П.К. Штернберга МГУ (ГАИШ МГУ)
2 - Институт геохимии и аналитической химии имени В.И. Вернадского РАН (ГЕОХИ РАН)
Космическая техника и технологии № 4(39), 2022, стр. 38-51

Абстракт. В статье описаны основные результаты исследований лунной поверхности, выполненных по данным орбитальных и спускаемых аппаратов и кораблей. В качестве иллюстраций использована Обзорная карта Луны в масштабе 1:13 000 000, на которой отображён рельеф лунной поверхности. Карта составлена на основе цифровой модели рельефа, построенной по данным лазерного высотомера американского космического аппарата Lunar Reconnaissance Orbiter с точностью 64 пикселя на градус (0,5 км на пиксель). В дополнение к рельефу, отображённому методом светотеневой отмывки, на карте приведены названия крупных образований Луны на латинском языке, принятом Международным астрономическим союзом, и на русском. Условными знаками на карте обозначены места посадок всех космических аппаратов и пилотируемых кораблей.

29-44.pdf


ОБЗОРНАЯ КАРТА ЛУНЫ 2022

Родионова Ж.Ф., Шевченко В.В., Гришакина Е.А., Слюта Е.Н.
Обзорная карта Луны третьего издания 2022 года

Абстракт. Рельеф лунной поверхности подробно отображён на Обзорной карте Луны в масштабе 1:13 000 000 третьего издания, дополненного местами посадок китайских КА «Chang’e 4, 5». Карта составлена на основе цифровой модели рельефа, построенной по данным лазерного высотомера американского космического аппарата Lunar Reconnaissance Orbiter с точностью 64 пикселя на градус (0,5 км на пиксель). В дополнение к рельефу, отображённому методом светотеневой отмывки, на карте приведены названия крупных образований Луны на латинском языке, принятом Международным астрономическим союзом, и на русском. Условными знаками на карте обозначены места посадок всех космических аппаратов и пилотируемых кораблей.

moon_survey_map_2022.tif


МОРФОМЕТРИЧЕСКИЙ КАТАЛОГ КРАТЕРОВ СЕВЕРНОЙ ПОЛЯРНОЙ ОБЛАСТИ ЛУНЫ

Н. А. Слодарж1, Ж. Ф. Родионова2
1 Уральский Федеральный Университет
2 Государственный Астрономический Институт им. П.К. Штернберга Московского Государственного Университета

Абстракт. Создан морфометрический каталог 2302 кратеров диаметром 10 км и более, расположенных в северной полярной области Луны (от 60°с.ш. до 90°с.ш.). Для каждого кратера на основе ЦМР с разрешением 120 м/пиксель, созданной по данным американского космического аппарата LRO, рассчитаны координаты, диаметры, глубина, углы наклона внешних и внутренних склонов, а также отношения глубины к диаметру.

NORTH POLE FINAL.xlsx


Морфометрический каталог кратеров южной полярной области Луны

Н. А. Слодарж1, Ж. Ф. Родионова2, Т. И. Левицкая1
1 Уральский Федеральный Университет
2 Государственный Астрономический Институт Московского Государственного Университета

Абстракт. Создан морфометрический каталог 1320 кратеров диаметром 10 км и более, расположенных в южной полярной области Луны (от -60° до -90°). Для каждого кратера на основе ЦМР с разрешением 120 м/пиксель, созданной по данным американского космического аппарата LRO, рассчитаны координаты, диаметры, глубина, углы наклона внешних и внутренних склонов, а также отношения глубины к диаметру.

Morphometric-catalog-of-lunar-craters-(3).xlsx


ПЕРВОЕ ФОТОГРАФИРОВАНИЕ ОБРАТНОЙ СТОРОНЫ ЛУНЫ

Родионова Ж.Ф., Шевченко В.В.

Абстракт. В связи с 60-летием получения первых фотографий обратной стороны Луны обсуждаются методы получения и дешифрирования снимков АМС «Луна 3», создание Атласа обратной стороны Луны, первой карты и глобуса, на которых отображена часть обратной стороны Луны. Приведены интересные факты, связанные с наименованиями форм рельефа, выявленных по снимкам АМС «Луна 3.»


Development of a new Phobos atlas based on Mars Express image data

I.Karachevtseva a, A. Kokhanov a, J. Rodionova a,b, A. Konopikhin a, A. Zubarev a, I. Nadezhdina a, L. Mitrokhina a, V. Patratiy a, J. Oberst a,c,d
a-Moscow State University of Geodesy and Cartography (MIIGAiK), MIIGAiK Extraterrestrial Laboratory(MExLab), Gorokhovsky per., 4, 105064, Moscow, Russia.
b-Sternberg Astronomical Institute Moscow State University, University pr., 13,119992, Moscow, Russia.
c-German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany.
d-Technical University Berlin, Institute for Geodesy and Geoinformation Sciences, Berlin, Germany.
Planetary and Space Science 2015, 108, pp. 24-30

Abstract. A new Phobos Atlas has been prepared, which includes a variety of thematic maps at various projections and scales, emphasizing dynamic topography, surface multispectral properties, geomorphology, as well as grooves-and crater statistics. The atlas benefits from innovative mapping techniques and recent results from Mars Express image processing: new derived control point networks, shape models and gravity field working models. A structure of the atlas is presented and some examples of the maps are shown. The Phobos Atlas can be useful for the future mission planning to the Martian satellite.

3863_PSS_Phobos Atlas_Final.pdf


КАРТОГРАФИРОВАНИЕ ВНЕЗЕМНЫХ ТЕРРИТОРИЙ:
СОВРЕМЕННЫЕ ЗАДАЧИ КОСМИЧЕСКОЙ ТОПОНИМИКИ

В.П. Савиных1, И.П. Карачевцева1, Ж.Ф. Родионова1,2, С.Г. Пугачева1
1-Московский государственный университет геодезии и картографии, Россия
2-Государственный астрономический институт им. П.К. Штернберга, Москва, Россия
Известия высших учебных заведений. Геодезия и аэрофотосъемка. 2016, том 60, № 5, с. 63-67

Абстракт. Рассматриваются актуальные вопросы космической топонимики, неразрывно связанные с созданием карт небесных тел Солнечной системы, включая обновление двуязычной базы данных планетных названий, ранее созданной при участии отечественных картографов, планетологов, астро- номов, филологов и историков культуры. Обсуждаются первые карты внеземных территорий на двух языках, созданные с использованием разработанной двуязычной (русско-английской) информационно- поисковой системы. Сообщается о недавних инициативах по наименованию лунных объектов, пред- принятых для закрепления российских приоритетов на Луне, в частности, наименования малых крате- ров по маршруту Лунохода-1.

MAPPING_OF_EXTRATERRESTRIAL_TERRITORIES.pdf


ГИПСОМЕТРИЧЕСКАЯ КАРТА ПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ

Коханов А.А., Родионова Ж.Ф., Карачевцева И.П.
Карта опубликована МИИГАиК, 2016, 1 п.л.

Абстракт. Карта построена на основе цифровой модели рельефа Луны (Smith et al, 2010) относительно среднего радиуса Луны 1737,4 км в нормальной стереографической проекции в масштабе 1:1 600 000 до параллелей +/-75°. Рельеф показан горизонталями, проведенными через 500 м, цветной послойной окраской и отметками высот. Названия кратеров даны на латинском и русском языках. Условными знаками показаны постоянно затененные области и предполагаемые места посадок КА «Луна 25, 27». На гистограммах распределения высот хорошо видны отличия в северной и южной приполярных областях. Дополнительно на картах-врезках показаны рельеф кратера Богуславский и уклоны в эллипсах прицеливания.

Hypsometric_map_of_lunar_poles_final_raster1_simplified.pdf


ПЛАНЕТЫ ЗЕМНОЙ ГРУППЫ И ИХ СПУТНИКИ

Родионова Ж.Ф.
Одесский астрономический календарь 2019 г. с. 161-168

Абстракт. Приведен обзор современных исследований поверхностей Луны, Меркурия, Венеры, Марса и его спутников.

TERRESTRIAL_PLANETS_AND_THEIR_SATELLITES.doc


АНАЛИЗ ВЫСОТ РЕЛЬЕФА ЛУНЫ И КОРРЕЛЯЦИОННОЙ СВЯЗИ РЕЛЬЕФА С ГРАВИТАЦИОННЫМ ПОЛЕМ; ПРЕДВАРИТЕЛЬНЫЕ ВЫВОДЫ О ГЛОБАЛЬНЫХ ПЛОТНОСТНЫХ НЕОДНОРОДНОСТЯХ КОРЫ ЛУНЫ

Н. А. Чуйковаa, *, Ж. Ф. Родионоваa, Т. Г. Максимоваa , Е. А. Гришакинаb
a-Государственный астрономический институт им. П.К. Штернберга, МГУ, Москва, 119234 Россия
b-Институт геохимии и аналитической химиии им. Вернадского, РАН, Москва, 119991 Россия
*e-mail: jeanna@sai.msu.ru
АСТРОНОМИЧЕСКИЙ ВЕСТНИК, 2019, том 53, № 3, с. 174–184

Abstract. На основе разработанной авторами методики проведен гармонический и статистический анализ высот рельефа Луны. Даны объяснения смещений центра фигуры Луны относительно центра масс и сдвига большой экваториальной оси относительно направления на Землю. Построены карты аномалий плотности для приповерхностных слоев Луны, соответствующие масконам (при отрицательной корреляции поля и рельефа в основном для N = 10, 11) и другим вариантам связи гравитационного поля и рельефа (при положительной корреляции поля и рельефа). Показано, что гармоники степеней N = 5–9 в основном соответствуют изостатической компенсации рельефа в приповерхностных слоях коры, низкие гармоники (N < 5) соответствуют изостатической компенсации рельефа в более глубоких слоях, а гармоники степеней N > 11 могут говорить о наличии напряжений в коре, создаваемых мелкими структурами рельефа. На основе построенных карт определены возможные места запасов летучих (в основном на обратной стороне Луны и в северной приполярной области) и других полезных ископаемых.

ASV0174.pdf


THE HISTORY OF RESEARCHES OF THE MOON BY SPACE VEHICLES DEPICTED ON THE POSTAGE STAMPS OF THE WORLD

Renato Dicati¹, Zhanna Rodionova²
1-USFI (Unione Stampa Filatelica Italiana) Milan, Italy, e-mail: renato.dicati@gmail.com
2-Sternberg State Astronomical Institute 119992 Universitetskiy pr.13 e-mail: marss8@mail.ru
THE NINTH MOSCOW SOLAR SYSTEM SYMPOSIUM 2018 MS-PS-84

Abstract. Although the spatial philately was born after the launch of the first artificial satellite, Sputnik 1, the first its stamps is included in a set dedicated to Soviet Union scientists, issued in August 15, 1951, that depicts Konstantin Tsiolkovsky, the father of astronautics and the first image of a cosmic rocket. A few days after the launch of Sputnik, on October 7, 1957, two stamps were issued: the first belonging to the set dedicated to the International Geophysical Year, contains the text ‘research with rockets’ and an image in which a rocket is drawn on the background of a starry sky. The second stamp, dedicated to the birth’s centenary of Tsiolkovsky, shows the portrait of the scientist and, in the background, a rocket and the planet Saturn. On this stamp November 28, 1957, a black overprint was imprinted with the words “4 October 1957 the first Earth’s artificial satellite”. This was the first real astrophilatelitic issue. There are tables with the names of lunar spacecrafts and images of stamps devoted them in the poster.

Dicati _Rodionova_Abstract _9MS3.pdf


Mapping of potential lunar landing areas using LRO and SELENE data

A.A. Kokhanova,*, I.P. Karachevtsevaa, A.E. Zubareva, V. Patratya, Zh.F. Rodionovab, J. Oberstc,d
a MIIGAiK Extraterrestrial Laboratory (MExLab), Moscow State University of Geodesy and Cartography (MIIGAiK), Moscow, Russia
b Sternberg State Astronomical Institute Lomonosov Moscow University, Moscow, Russia
c Technical University of Berlin, Berlin, Germany
d German Aerospace Center (DLR), Berlin, Germany
Planetary and Space Science 162 (2018) 179-189

Abstract. We apply cartographic methods on remote sensing data obtained by Lunar Reconnaissance Orbiter (LRO) and Kaguya (SELENE) to characterize potential landing sites for the “Luna-25” mission, previously selected. To identify presumable hazards (steep slopes, high ruggedness, cratered terrain) we developed special algorithms and GIS-tools. Sets of hazard maps for 3 high-priority potential landing sites were created.

Mapping-of-landing-sites_final.pdf


Mapping of inner and outer celestial bodies using new global and local topographic data derived from photogrammetric image processing

I.P. Karachevtsevaa, A.A. Kokhanova, J.F. Rodionovaa,b, A.Yu. Zharkovaa,, M.S. Lazarevaa
a-Moscow State University of Geodesy and Cartography (MIIGAiK), MIIGAiK Extraterrestrial laboratory (MExLab),
105064. Gorokhovsky per., Moscow, Russia, i_karachevtseva@miigaik.ru
b-Sternberg State Astronomical Institute, 1198993, Moscow, Russia
Commission IV, WG IV/8

Abstract. New estimation of fundamental geodetic parameters and global and local topography of planets and satellites provide basic coordinate systems for mapping as well as opportunities for studies of processes on their surfaces. The main targets of our study are Europa, Ganymede, Calisto and Io (satellites of Jupiter), Enceladus (a satellite of Saturn), terrestrial planetary bodies, including Mercury, the Moon and Phobos, one of the Martian satellites. In particular, based on new global shape models derived from three-dimensional control point networks and processing of high-resolution stereo images, we have carried out studies of topography and morphology. As a visual representation of the results, various planetary maps with different scale and thematic direction were created. For example, for Phobos we have produced a new atlas with 43 maps, as well as various wall maps (different from the maps in the atlas by their format and design): basemap, topography and geomorphological maps. In addition, we compiled geomorphologic maps of Ganymede on local level, and a global hypsometric Enceladus map. Mercury’s topography was represented as a hypsometric globe for the first time. Mapping of the Moon was carried out using new images with super resolution (0.5-1 m/pixel) for activity regions of the first Soviet planetary rovers (Lunokhod-1 and -2). New results of planetary mapping have been demonstrated to the scientific community at planetary map exhibitions (Planetary Maps Exhibitions, 2015), organized by MExLab team in frame of the International Map Year, which is celebrated in 2015-2016. Cartographic products have multipurpose applications: for example, the Mercury globe is popular for teaching and public outreach, the maps like those for the Moon and Phobos provide cartographic support for Solar system exploration.

isprs-archives-XLI-B4-411-2016.pdf


ОБЗОРНАЯ КАРТА ЛУНЫ

Гришакина Е.А²., Родионова Ж.Ф.¹, Шевченко В.В.¹ Слюта Е.Н.²
1- ГАИШ МГУ, 2- ГЕОХИ РАН

ГАИШ МГУ совместно с ГЕОХИ РАН составлена и издана ОБЗОРНАЯ КАРТА ЛУНЫ в масштабе 1:13 000 000, на которой подробно отображен рельеф лунной поверхности.


Atlas Planetary Mapping: Phobos Case

I.P. Karachevtseva¹, A. A. Kokhanov¹ and Zh. Rodionova²
1-Moscow State University of Geodesy and Cartography
2-Sternberg Astronomical Institute of Lomonosov Moscow University
In the book Planetary Cartography and GIS. ed. Henrik Hargitai,Springer Nature Switzerland AG 2019, pp 235-251

Abstract. We present a general procedure of the Phobos Atlas creation. Main principles of mapping, mathematical, and geographical basics are described and justified. Data sources for mapping are listed. Approaches in the development of legends and design are considered, and some examples of the maps are shown.

Springer Phobos.pdf


Cartography of the Soviet Lunokhods’Routes on the Moon

P. Karachevtseva¹, A. A. Kokhanov¹, N. A. Kozlova¹ and Zh. F. Rodionova²
1-Moscow State University of Geodesy and Cartography
2-Sternberg Astronomical Institute of Lomonosov Moscow University
In the book Planetary Cartography and GIS. ed. Henrik Hargitai,Springer Nature Switzerland AG 2019, pp 263-278

Abstract. Soviet missions Luna-17 (1971) and Luna-21 (1973) deployed the roving robotic vehicles Lunokhod-1 and Lunokhod-2 on the lunar surface. The Lunokhods (Moonwalkers) were the first extraterrestrial rovers that were operated remotely from Earth. Using Lunar Reconnaissance Orbiter (LRO) narrowangle camera (NAC) (Robinson et al. 2010), the Lunokhods’ routes have been reconstructed (Karachevtseva et al. 2013; 2017). Following the rover tracks that are visible on high-resolution LROC NAC images, we identified the exact rover traverses and compared them with data from archive topographic maps created during Soviet lunar missions. Derived LRO data (DEMs and orthomosaics) allowed us to analyze the topography of the Moon area at the local level and to map the Lunokhods’ routes with more details.

Springer Lunokhod.pdf


ЖЕНСКИЕ НАЗВАНИЯ НА ЛУНЕ

Ж.Ф. РОДИОНОВА, Е.А. ФЕОКТИСТОВА

Приведен доклад о женских наименованиях на картах Луны, представленный на специальной конференции в ГАИШ, посвященной столетию Международного астрономического союза. Впервые представлены изображения всех кратеров, названных в честь выдающихся женщин.


КАРТОГРАФИРОВАНИЕ МАРСА.

Ж.Ф.РОДИОНОВА1, Ю.А.БРЕХОВСКИХ2, Е.Н.ЛАЗАРЕВ1,3, М.С. ЛАЗАРЕВА3, В.В.ШЕВЧЕНКО1

1- Государственный астрономический институт им. П.К.Штернберга МГУ им. М.В.Ломоносова
2- Институт космических исследований РАН
3 -Географический факультет МГУ им. М.В.Ломоносова

rodionova_et_al_2013.pdf


Новая карта спутников Марса.

М.С. ШИБАНОВА, Е.Н. ЛАЗАРЕВ, кандидат технических наук
Ж.Ф. РОДИОНОВА, кандидат физико-математических наук

ГАИШ МГУ

Zeml_Vsel_6_Shubanova_ 3-18---1.pdf


Hypsometric Globe of Mars – 3D Model of the Planet.

Zh. F. Rodionova 1, J. A. Brekhovskikh2
1 Sternberg State Astronomical Institute Lomonosov Moscow University, Russia; marss8@mail.ru
2 Space Research Institute, Moscow, Russia; julia_br@iki.rssi.ru

Abstract. The new Hypsometric Globe of Mars is based on laser altimeter data of Mars Global Surveyor spacecraft. The diameter of the globe is 21 cm. Coordinates and the heights of 64 800 points on the surface of Mars were used for creating a 3-D Model of the surface of Mars.. A digital model of the relief was constructed with ArcGIS software. Contour lines were added together with hill-shading on the globe. The names of the main features – lands, plateaus, mountains, lowlands – plains and also some large craters are labeled. The places of landing sites of the spacecrafts are shown.

Rodionova ICC2013.pdf


История картографирования Луны.

Ж.Ф.Родионова, Государственный астрономический институт им.П.К.Штернберга, 2009.

Mapping the history of the moon.pdf


A TREATMENT OF DATA BANK OF MORPHOLOGIC CATALOGUE OF MERCURIAN CRATERS.

B. D. Sitnikov., E.A. Kozlova, J.F. Rodionova.
Sternberg State Astronomical Institute, Moscow, jeanna@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia

78_Sitnikov_etal.pdf


AUTOMATIC COMPILING OF HYPSOMETRIC MAP OF A PART OF THE VENUSIAN SURFACE.

E.N.Lasarev1, J. F. Rodionova 2,
1- Geographical faculty M.V. Lomonosov Moscow State University,
2- Sternbrg Sate Astronomical Institute, Universitetskij prospect 13, Moscow 119992, jeanna@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia

56_Lasarev_Radionova.pdf


THE NEW DATA ON THE EARLY STAGE OF DEVELOPMENT OF THE EARTH, MARS, THE MOON AND MERCURY.

A.V.Dolitsky1, R.M.Kochetkov2, E.A. Kozlova3, J.F.Rodionova3,
1 - United Institute of Physics of the Earth RAS, Moscow, av13868@comtv.ru,
2 - Moscow Technical University of communication and information, Moscow, krmkrm@rol.ru.
3 – Sternberg State Astronomical Institute, Moscow, jeanna@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia

21_Dolitsky_etal.pdf


SOME FEATURES OF THE CRATERING OF ISIDIS BASIN.

J.A.Iluhina, A.V.Lagutkina, J.F.Rodionova.
Sternberg State Astronomical Institute, Moscow University, jeanna@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia

ms035.pdf


MARS: MOVEMENT OF GEOGRAPHICAL POLES AND DEFORMATION OF ITS SURFACE.

A.V. Dolitsky 1, J. F. Rodionova 2, R M. Kochetkov 3, A. F. Ainetdinova 2
1 - United Institute of Physics of the Earth of Russian Academy of Sciences .Moscow, ab4870@mail.sitek.ru
2 – Sternberg State Astronomical Institute, Moscow. jeanna@sai.msu.ru.
3 - Moscow Technical University of communication and information, krmkrm@rol.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia

ms015.pdf


AN ANALYSIS OF THE DATA OF MARS ORBITER LASER ALTIMETER.

Rodionova J1., Iluhina J2., Michael G1,
1Sternberg State Astronomical Institute, jeanna@sai.msu.ru,
2Moscow University,
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia

MS060.pdf


A HIPSOMETRICAL FEATURES OF THE LUNAR SURFACE FROM THE CLEMENTINE MISSION.

J. F. Rodionova1, O. V. Elkina2, E. A. Kozlova1, V. V. Shevchenko1, P.V. Litvin2.
1. Sternberg State Astronomical Institute, 119899, Moscow, Russia; jeanna@sai.msu ru.
2. Moscow State University, Vorobjovy Gory, 119899, Moscow, Russia.
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia

MS059.pdf


Morphological Catalogue Of The Craters Of Mars.

J. F. Rodionova, K. I. Dekchtyareva, A. A. Khramchikhin, G. G. Michael, S. V. Ajukov, S. G. Pugacheva, V. V. Shevchenko.
Editors: V.V. Shevchenko, A.F. Chicarro. 2000.


Morphological Analysis of the Cratering of the South Pole–Aitken Basin on the Moon

Zh. F. Rodionova and E. A. Kozlova

Morphological.pdf


Морфологический каталог кратеров Луны.

Ж.Ф. Родионова, А.А.Карлов, Т.П. Скобелева и др. Под общей редакцией В.В.Шевченко.
М.: Изд-во МГУ, 1987.- 173 с.

Приведены координаты, диаметры и морфологические признаки 14 923 кратеров Луны, диаметром более 10 км. Морфологические признаки даны на основе анализа космических снимков и современных фотографических атласов.
Для широкого круга исследователей, занимающихся изучением поверхности Луны и сравнительной планетологией.


Научно-популярные обзоры

Меркурий

Карты Меркурия

Венера

Карты Венеры

Луна

Легко ли достать Луну с неба?

Карты Луны

Марс

Карты Марса

Юпитер

Сатурн

Уран

Нептун

Плутон


Санович А.Н.


ASTEROIDAL DAMAGE TO THE EARTH: IMPLICATIONS BY ASTEROIDS - RUBBLE PILES.

G.A. Leikin, A.N. Sanovich,
Sternberg State Astronomical Institute, Universitetsky Prosp. 13, Moscow 119892, Russia, E-mail:san@sai.msu.ru.

m44_56_leikin_sanovich.pdf


A TIME ESTIMATE FOR CONSOLIDATION AND DISINTEGRATION OF AN ASTEROID – RUBBLE PILE. THE SIMPLEST MODEL. A PRELIMINARY ANALYSIS.

G.A. Leikin, A.N. Sanovich,
Sternberg, State Astronomical Institute Universitetsky Prosp. 13, Moscow 119992, Russia E-mail: san@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 42, October 10-12, 2005, Moscow, Russia.

m42_46.pdf


ON A TIME SPAN OF ASTEROID – RUBBLE PILE (ARP) CONSOLIDATION AND A REASON OF LOW DENSITY OF SUCH ASTEROIDS.

G. A. Leikin and A.N. Sanovich.
Sternberg State Astronomical Institute, Moscow, State University, 119992, Moscow, Universitetskij prosp. 13, Russia, E-mail: san@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia.

58_Leikin_Sanovich.pdf


SOME PROBLEMS OF THE EVOLUTION OF ASTEROID – RUBBLE PILE.

G.A. Leikin and A.N. Sanovich, Sternberg State Astronomical Institute, Moscow State University,
119992,Moscow,Universitetskij Prosp. 13, Russia , E-mail:san@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms059.pdf


SOME PROBLEMS OF THE EVOLUTION OF ASTEROIDS – RUBBLE PILE.

G.A. Leikin, A.N. Sanovich. Sternberg Astronomical Institute, Moscow 119899, Russia.
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia.

MS047.pdf


Феоктистова Е.А.


СОЗДАНИЕ КАРТЫ ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ

Гришакина Е.А., Родионова Ж.Ф., Слюта Е.Н., Феоктистова Е.А., Шевченко В.В.
ABSTRACT-BOOK of the Fourteenth Moscow Solar System Symposium. October 9-13.2023. 14 MS-3-MN-PS-13.

Абстракт. Описана методика создания Карты приполярных областей Луны 1:5 000 000 масштаба, ограниченной параллелями +/- 60°. Условным знаком на карте показано место мягкой посадки КА «Чандраян 3». Количество кратеров диаметром 10 км и более в северной полярной области составляет 2032 кратера, а в южной области 1320 кратеров. Показано, что кратеры южной полярной области в среднем на 1-2 км глубже, чем кратеры северной полярной области. Приведены графики зависимости числа кратеров от соотношения глубина-диаметр в северной и южной полярных областях.

14M-S3_New.docx


КАРТА ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ ОТ ПАРАЛЛЕЛЕЙ +/-55°

Гришакина Е.А., Родионова Ж.Ф., Феоктистова Е.А., Слюта Е.Н., Шевченко В.В.

Абстракт. Карта приполярных областей Луны составлена в Полярной стереографической проекции в масштабе 1:6 000 000. Северная и южная приполярные области ограничены параллелями +/- 55° для того, чтобы показать место падения аппарата «Луна 25». Рельеф лунной поверхности показан методом послойной многоцветной «отмывки» на основе цифровой модели по данным лазерного альтиметра LOLA КА «Lunar Reconnaissance Orbiter». Высоты отсчитаны от сферы радиусом 1737,4 км. Наименования форм рельефа Луны на латинском языке нанесены на карту согласно решениям МАС и на русском языке в соответствие с книгой «Наименования форм рельефа Луны» под общей редакцией В.В. Шевченко, 2022 г. Карта Филипа Стука «Lunar Landing and Impact Sites» использована для показа мест падений КА “Lunar Prospector”, “Chandrayaan 1, 2”, “LCROSS”, “Kaguya”, “GRAIL A, GRAIL B”. Место мягкой посадки КА «Чандраян 3» отмечено на карте флажком.

Составитель: Гришакина Е.А.
Редакторы: Родионова Ж.Ф., Феоктистова Е.А.
Научные редакторы: Шевченко В.В., Слюта Е.А.
Карта составлена Государственным астрономическим институтом им. П.К. Штернберга МГУ и Институтом геохимии и аналитической химии им. В.И. Вернадского РАН в 2023 г.

Moon_55_2023YFS_500dpi.pdf


КАРТА ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ

Гришакина Е.А., Родионова Ж.Ф., Феоктистова Е.А., Слюта Е.Н., Шевченко В.В.
Государственный астрономический институт им. Штернберга МГУ,
Институт геохимии и аналитической химии им. Вернадского РАН.

Абстракт. Карта приполярных областей Луны, ограниченных параллелями +/- 60°, составлена в масштабе 1:5 000 000 в полярной стереографической проекции. Эти районы представляют особый интерес, поскольку там в постоянно затененных областях в глубоких кратерах был обнаружен лед. Высоты лунной поверхности определены с высокой точностью альтиметрами КА «Кагуя» и «Лунар реконнеисенс орбитер» (LRO) Для отображения рельефа на карте нами использовалась цифровая модель с разрешением 0,5 км на пиксель. Высоты на карте определены относительно сферы со средним радиусом 1737,4 км. Перепад высот на Луне составляет около 20 км. Шкала высот в приполярных районах представлена 17 уровнями, отражающими разные высоты и глубины лунной поверхности. Трехмерное отображение поверхности показано методом цветовой «отмывки» в соответствии с цифровой моделью Гришакиной Е.А. При этом использовалось программное обеспечение ESRI ArcGIS 10.1. На карте приполярных областей подписаны все собственные наименования кратеров на латинском языке, принятом Международным астрономическим союзом (МАС) и русском языке. Условным знаком показано место мягкой посадки индийского спускаемого аппарата Чандрайян-3, впервые севшего вблизи южного полюса Луны 23 августа 2023 года. Карта приполярных областей Луны представлена в двух форматах для печати: А1 и А3.

Moon_Polar_А1R.jpg

Moon_Polar_А3R3.jpg


МОРФОЛОГИЧЕСКИЙ КАТАЛОГ КРАТЕРОВ МЕРКУРИЯ, СОСТАВЛЕННЫЙ ПО ДАННЫМ КА «МАРИНЕР 10»

Феоктистова Е.А., Родионова Ж.Ф., Майкл Г.Г., Пугачева С.Г., Шевченко В.В.

Под общей редакцией Шевченко В.В.

Основным источником для определения координат кратеров, диаметров и морфологических особенностей являлся Atlas of Mercury NASA. В каталоге приведены координаты, диаметры и морфологические признаки 6492 кратеров Меркурия, диаметром более 10 км. Данные каталога можно использовать для морфологического анализа процессов кратерирования на Меркурии. Каталог предназначен для широкого круга исследователей, занимающихся изучением поверхности Луны и сравнительной планетологией.


Origin and stability of lunar polar volatiles

Berezhnoy A.A., Kozlova E.A., Sinitsyn M.P., Shangaraev A.A., Shevchenko V.V.

в журнале Advances in Space Research, том 50, с. 1581-1712 DOI
издательство Pergamon Press Ltd. (United Kingdom)

ASR Origin and Stability.pdf


Properties of the impact-produced lunar exosphere during Perseid 2009 meteor shower

A.A. Berezhnoy (1), O.R. Baransky (2), K.I. Churyumov (2), V.V. Kleshchenok (2), E.A. Kozlova (1), V. Mangano (3), V.O. Ponomarenko (2), Yu.V. Pakhomov (4), V.V. Shevchenko (1), yu. I. Velikodsky (5)
(1) Sternberg Astronomical Institute, Universitetskij pr., 13, Moscow, 19991, Russia.
(2) Shevchenko National University, Kiev, Ukraine
(3) Institute Astrophysics and Planetology from Space, INAF, Rome, Italy
(4) Institute of Astronomy, Russian Academy of Science, Pyatnitskaya Street 48, Moscow, 119017 Russia
(5) Institute of Astronomy, Kharkiv National University, 35 Sumskaya Street

EPSC abstract
Vol. 7 EPSC2012-52 2012
European Planetary Congress 2012

EPSC2012-52.pdf


Stability of Volatile Species at the Poles of the Moon

Berezhnoy A.A., Kozlova E.A., Shevchenko V.V.

в сборнике Lunar and Planetary Institute Science Conference Abstracts, серия Lunar and Planetary Institute Science Conference Abstracts, том 43, с. 1396 тезисы

LPSC 2012 1396.pdf


The Cold Traps Near the South Pole of the Moon

Berezhnoy A.A., Kozlova E.A., Shevchenko V.V.

в сборнике 36th Annual Lunar and Planetary Science Conference, серия Lunar and Planetary Institute Science Conference Abstracts, том 36, с. 1061 тезисы

Houston2005(1).pdf


THE CRATERS SHOEMAKER AND FAUSTINI AS COLD TRAPS FOR VOLATILES

E. A. Kozlova1, V. V. Shevchenko1 . Sternberg State Astronomical Institute, 119899, Moscow, Russia
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia

50_Kozlova_Shevchenko.pdf


О ПРИРОДЕ АНОМАЛЬНЫХ ОБРАЗОВАНИЙ В ПОЛЯРНЫХ ОБЛАСТЯХ МЕРКУРИЯ И ЛУНЫ

Е.А.Козлова

Государственный астрономический институт им. П.К.Штернберга
Московского государственного университета им.М.В.Ломоносова, Россия
Поступила в редакцию 27.01.2004 г.
АСТРОНОМИЧЕСКИЙ ВЕСТНИК, 2004, том 38, №5, с. 1-13

AstVest5_04KozlovaLO.pdf


Чикмачев В.И.


AN ORIGIN FOR THE SOUTH POLE-AITKEN BASIN THORIUM. V.I.

Chikmachev, S.G.Pugacheva, Sternberg State Astronomical institute. Moscow University, Moscow. chik@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 42, October 10-12, 2005, Moscow, Russia.

m42_12.pdf


GENERALIZED TOPOGRAPHY OF THE LUNAR SOUTH POLE - AITKEN BASIN.

 V.I.Chikmachev, S.G.Pugacheva and V.V.Shevchenko, Sternberg State Astronomical Institute, Moscow University, Moscow, chik@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia.

17_Chikmachev_etal.pdf


Гигантский кратер на обратной стороне Луны.

В.И.Чикмачев.

ЗВЕЗДОЧЕТ №2 2002, с.14-15.


TO THE DISCOVERY OF THE "SOUTH POLE - AITKEN" BASIN.

V. I. Chikmachev and V.V. Shevchenko,
Sternberg State Astronomical Institute, Moscow University, Universitetsky 13, Moscow, 119899 , Russia,
MICROSYMPOSIUM 34, Topics in Comparative Planetology October 8-9, 2001, Moscow, Russia.

MS015.pdf


Шевченко В.В.


ОБЗОРНАЯ КАРТА ЛУНЫ 2024

Гришакина Е.А., Родионова Ж.Ф., Шевченко В.В., Слюта Е.Н.

Абстракт. В процессе составления «Обзорной карты Луны 2024» масштаба 1:13 000 000 были изучены характерные особенности лунного рельефа, отобраны и обработаны данные лазерного высотомера LOLA космического аппарата LRO, которые были использованы в качестве исходной информации. При картографировании использовано программное обеспечение ESRI ArcGIS 10.1. В ходе разработки цветовой шкалы для отображения высот на карте были учтены различия в рельефе видимого и обратного полушарий Луны, и решена задача отображения характерных форм лунного рельефа. На карте приведены названия лунных морей, заливов, озер, гор, долин, кратеров и других образований на латинском и русском языках, показаны места посадок космических аппаратов (КА) и пилотируемых кораблей Аполлон. На «Обзорной карте Луны 2024», в отличие от предыдущей версии «Обзорной карты Луны 2022», показаны места посадок индийского КА “Сhandrayaan 3”, японского КА “SLIM” и китайского КА “Chang’e 6”.

LUNAR SURVEY MAP 2024.tif


СОЗДАНИЕ КАРТЫ ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ

Гришакина Е.А., Родионова Ж.Ф., Слюта Е.Н., Феоктистова Е.А., Шевченко В.В.
ABSTRACT-BOOK of the Fourteenth Moscow Solar System Symposium. October 9-13.2023. 14 MS-3-MN-PS-13.

Абстракт. Описана методика создания Карты приполярных областей Луны 1:5 000 000 масштаба, ограниченной параллелями +/- 60°. Условным знаком на карте показано место мягкой посадки КА «Чандраян 3». Количество кратеров диаметром 10 км и более в северной полярной области составляет 2032 кратера, а в южной области 1320 кратеров. Показано, что кратеры южной полярной области в среднем на 1-2 км глубже, чем кратеры северной полярной области. Приведены графики зависимости числа кратеров от соотношения глубина-диаметр в северной и южной полярных областях.

14M-S3_New.docx


КАРТА ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ ОТ ПАРАЛЛЕЛЕЙ +/-55°

Гришакина Е.А., Родионова Ж.Ф., Феоктистова Е.А., Слюта Е.Н., Шевченко В.В.

Абстракт. Карта приполярных областей Луны составлена в Полярной стереографической проекции в масштабе 1:6 000 000. Северная и южная приполярные области ограничены параллелями +/- 55° для того, чтобы показать место падения аппарата «Луна 25». Рельеф лунной поверхности показан методом послойной многоцветной «отмывки» на основе цифровой модели по данным лазерного альтиметра LOLA КА «Lunar Reconnaissance Orbiter». Высоты отсчитаны от сферы радиусом 1737,4 км. Наименования форм рельефа Луны на латинском языке нанесены на карту согласно решениям МАС и на русском языке в соответствие с книгой «Наименования форм рельефа Луны» под общей редакцией В.В. Шевченко, 2022 г. Карта Филипа Стука «Lunar Landing and Impact Sites» использована для показа мест падений КА “Lunar Prospector”, “Chandrayaan 1, 2”, “LCROSS”, “Kaguya”, “GRAIL A, GRAIL B”. Место мягкой посадки КА «Чандраян 3» отмечено на карте флажком.

Составитель: Гришакина Е.А.
Редакторы: Родионова Ж.Ф., Феоктистова Е.А.
Научные редакторы: Шевченко В.В., Слюта Е.А.
Карта составлена Государственным астрономическим институтом им. П.К. Штернберга МГУ и Институтом геохимии и аналитической химии им. В.И. Вернадского РАН в 2023 г.

Moon_55_2023YFS_500dpi.pdf


КАРТА ПРИПОЛЯРНЫХ ОБЛАСТЕЙ ЛУНЫ

Гришакина Е.А., Родионова Ж.Ф., Феоктистова Е.А., Слюта Е.Н., Шевченко В.В.
Государственный астрономический институт им. Штернберга МГУ,
Институт геохимии и аналитической химии им. Вернадского РАН.

Абстракт. Карта приполярных областей Луны, ограниченных параллелями +/- 60°, составлена в масштабе 1:5 000 000 в полярной стереографической проекции. Эти районы представляют особый интерес, поскольку там в постоянно затененных областях в глубоких кратерах был обнаружен лед. Высоты лунной поверхности определены с высокой точностью альтиметрами КА «Кагуя» и «Лунар реконнеисенс орбитер» (LRO) Для отображения рельефа на карте нами использовалась цифровая модель с разрешением 0,5 км на пиксель. Высоты на карте определены относительно сферы со средним радиусом 1737,4 км. Перепад высот на Луне составляет около 20 км. Шкала высот в приполярных районах представлена 17 уровнями, отражающими разные высоты и глубины лунной поверхности. Трехмерное отображение поверхности показано методом цветовой «отмывки» в соответствии с цифровой моделью Гришакиной Е.А. При этом использовалось программное обеспечение ESRI ArcGIS 10.1. На карте приполярных областей подписаны все собственные наименования кратеров на латинском языке, принятом Международным астрономическим союзом (МАС) и русском языке. Условным знаком показано место мягкой посадки индийского спускаемого аппарата Чандрайян-3, впервые севшего вблизи южного полюса Луны 23 августа 2023 года. Карта приполярных областей Луны представлена в двух форматах для печати: А1 и А3.

Moon_Polar_А1R.jpg

Moon_Polar_А3R3.jpg


Исследование и картографирование Луны космическими аппаратами и кораблями

Родионова Ж.Ф.1, Шевченко В.В.1, Гришакина Е.А.2, Слюта Е.Н.2
1 - Государственный астрономический институт имени П.К. Штернберга МГУ (ГАИШ МГУ)
2 - Институт геохимии и аналитической химии имени В.И. Вернадского РАН (ГЕОХИ РАН)
Космическая техника и технологии № 4(39), 2022, стр. 38-51

Абстракт. В статье описаны основные результаты исследований лунной поверхности, выполненных по данным орбитальных и спускаемых аппаратов и кораблей. В качестве иллюстраций использована Обзорная карта Луны в масштабе 1:13 000 000, на которой отображён рельеф лунной поверхности. Карта составлена на основе цифровой модели рельефа, построенной по данным лазерного высотомера американского космического аппарата Lunar Reconnaissance Orbiter с точностью 64 пикселя на градус (0,5 км на пиксель). В дополнение к рельефу, отображённому методом светотеневой отмывки, на карте приведены названия крупных образований Луны на латинском языке, принятом Международным астрономическим союзом, и на русском. Условными знаками на карте обозначены места посадок всех космических аппаратов и пилотируемых кораблей.

29-44.pdf


Международная молодежная школа-конференция «Космическая наука» в г. Казани (КФУ).

В.В.Шевченко, 29.11.2018.


Утилизация привнесенного на Луну астероидного вещества — экономичный путь к получению космических ресурсов высокой ценности.

В.В.Шевченко, 2018 г. Государственный астрономический институт имени П.К. Штернберга МГУ (ГАИШ МГУ)
Университетский пр-т, 13, г. Москва, Российская Федерация, 119991, e-mail: director@sai.msu.ru

В последние годы в аналитических обзорах эксперты все чаще обращают внимание на рост дефицита редких и редкоземельных элементов, необходимых для развития передовых технологий в современной промышленности. Для решения этой проблемы в будущем были предложены проекты утилизации вещества астероидов, сближающихся с Землей. Несмотря на сложности захвата, транспортировки и последующей разработки в космосе подобного объекта, такой путь решения задачи казался технологически возможным и рентабельно оправданным. Железо-никелевый астероид размером 10 м в поперечнике мог бы содержать до 75 т редких и редкоземельных металлов, прежде всего металлов платиновой группы, что эквивалентно коммерческой стоимости в ценах 2016 г. примерно $2,8 млрд. В данной работе показано, что утилизация астероидного вещества, поступающего на лунную поверхность, может оказаться технологически более простой и экономически более рентабельной. До настоящего времени считалось, что лунные ударные кратеры не содержат пород образовавших их астероидов, так как при высоких скоростях падения ударники испаряются в процессе столкновения с поверхностью Луны. Благодаря последним исследованиям выяснилось, что при скорости падения меньше 12 км/с ударник может частично сохраниться в механически раздробленном состоянии. Следовательно, к числу возможных ресурсов, присутствующих на лунной поверхности, можно отнести никель, кобальт, платину и редкие металлы астероидного происхождения. Приводимые расчеты показывают, что общая масса, например, платины и платиноидов на поверхности Луны в результате падения астероидов может составить до 14,1 млн т.

utilization.pdf


Снимки с нового лунного спутника подтвердили гипотезу свежих оползней и обрушений на стенках кратеров.

В.В.Шевченко, 14.11.2009.


Творческий путь в астрономии и космических исследованиях Ю.Н. Липского.

В.В.Шевченко, Государственный астрономический институт им.П.К.Штернберга, 2009.

Lipskiy_100.pdf


Новые результаты, полученные лунным спутником «ЛРО», и участие в проекте сотрудников ГАИШ.

В.В.Шевченко, Государственный астрономический институт им.П.К.Штернберга, 2009.

New results.pdf


EVALUATING THE STRUCTURE OF THE SURFACE LAYER OF MERCURY.

V.V.Shevchenko, Sternberg State Astronomical Institute, Moscow University, Moscow 119992, Russia, shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms082.pdf


MERCURY: LOCAL VARIATIONS OF THE PHOTOMETRIC RELIEF.

V.V.Shevchenko, Sternberg State Astronomical Institute, Moscow University, Moscow 119992, Russia, shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms083.pdf


REMOTE METHOD OF IDENTIFICATION OF THE EJECTA LUNAR TERRAINS AND THEIR COMPOSITION FITURES.

V.V. Shevchenko1, 2, P. Pinet2, S. Chevrel2, S.G. Pugacheva1, Y. Daydou2.

1 Sternberg State Astronomical Institute, Moscow University, 13 Universitetsky pr., 119992 Moscow, Russia;
2 UMR 5562/CNES/Observatory Midi-Pyrenees, Toulouse University, 14 avenue E. Belin, 31400 Toulouse, France. shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms084.pdf


REMOTE DETERMINATION OF LUNAR SOIL MATURITY.

V.V.Shevchenko1,2, P.C.Pinet1, S.Chevrel1, Y.Daydou1, T.P.Skobeleva2, O.I.Kvaratskhelia3, C.Rosemberg1.
1UMR 5562 "Dynamique Terrestre et Planetaire"/CNRS/UPS, Observatoire Midi-Pyrenees, Toulouse, 31400 France;
2Sternberg Astronomical Institute, Moscow University, Moscow, 119992, Russia,
3Abastumany Astrophysical Observatory, Georgian Academy of Sciences, Georgia. shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia.

ms085.pdf


MERCURY: SURFACE LAYER STRUCTURE FROM OPTICAL PROPERTIES.

V.V.Shevchenko, Sternberg State Astronomical Institute, Moscow University, Universitetsky 13, Moscow 119899, Russia, shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia.

MS064.pdf


PERMANENTLY SHADOWED AREAS AT THE LUNAR POLES.

V. V. Shevchenko1, E. A. Kozlova1, G. G. Michael1.
1.Sternberg State Astronomical Institute, 119899, Moscow, Russia. shev@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia.

MS065.pdf


VARIABLE RADIO EMISSION OF THE MOON AT 25 MM DURING THE LEONID 2000 METEOR SHOWER.

A.A. Berezhnoi (1), E. Bervalds (2), O.B. Khavroshkin (3), G. Ozolins (2), V.V. Shevchenko (1), V.V. Tsyplakov (3)
(1) SAI, Moscow, Russia; (2) VIRAC, Riga, Latvia; (3) UIEP, Moscow, Russia
Geophysical Research Abstracts Volumi 3, 2001.

Radioseismology of the Moon and planets is based on registration and interpretation of electromagnetic radiation of seismic origin. The frequency of such electromagnetic radiation varies from some kHz to the frequency of soft X-ray radiation. The most probable two models of transformation of mechanical stress into electromagnetic radiation are: 1) the formation of new microcracks; 2) charges arising at the peaks of existing cracks drawing under the action of increasing load. We observed the Moon on November 16 - 18 with the 32 m antenna of the Ventspils International Radio Astronomy Center at 12.2 GHz. The half-power beamwidth was 3.5 arcminutes. The DSB bandwidth is 2 x 22 MHz and output time constant is 1 sec. The observable lunar region was a seismic active region (30W, 5S). We could not exactly track the antenna with the velocity of the Moon, an observable region lagged behind and during 30 minutes of observation cycle the beam draw a near 15 arcminutes long trip on the lunar surface in direction to Mare Serentatis. During the morning of November 17 we registered significant quasiperiodic oscillations of the lunar radio emission starting near 1:44 UT. Similar oscillations were registered on November 18 starting near 2:28 UT. More or less intensive oscillations (quasiperiods were equal to 1-2 minutes) were received until November 18, 9:30 UT with bottom to peak heights of some K, sometimes up to 10K. The character of these oscillations is different from atmospheric fluctuations. The time of observed oscillations does not contradicts with predictions of McNaught about the Leonid activity on the Moon. Similar oscillations were registered after the Lunar Prospector impact (July 31, 1999) during observations of the Moon at 13 and 21 cm. These results can be explained by detection of the lunar radio emission of seismic origin. The interpretation of quasiperiodic oscillations in terms of Nikolaevsky's waves is given. Implications of radioseismic method of investigations of the Moon for determination of the intensity of meteor showers on lunar orbit and for estimation of the mineral composition of lunar regolith are described.


THE CHEMICAL COMPOSITION OF LUNAR REGOLITH NEAR COLD TRAPS.

Berezhnoi, A.A. (1), Klumov B.A.(2), Shevchenko V.V.(1)
(1) Sternberg Astronomical Institute, Moscow, Russia, (2) Institute of Dynamics of Geospheres, Moscow, Russia
Geophysical Research Abstracts Volumi 3, 2001.

In our previous papers we have found that a significant part of cometary matter is captured by the Moon after a low-speed collision between a comet and the Moon. Now we consider the chemical composition of impact vapour formed after a such collision based on new kinetical model of chemical processes. We have found that H2O, CO2, and SO2 are main H-, C-, and S-containing species respectively in the fireball. The temperature in polar regions near cold traps is suitable for the presence of some volatile compounds (sulfur, carbon and hydrocarbons) in the regolith. We estimate an amount of sulfur- and carbon- containing species delivered to lunar polar regions due to cometary impacts. Our estimations can be checked during conduction of observations by the SMART-1 spacecraft.


THE SPACE ANGULAR FUNCTION OF THE MOON'S THERMAL EMISSION (10 -12 MICRON).

S.G. Pugacheva and V.V. Shevchenko
Sternberg State Astronomical Institute, Universitetskiy pr.13, Moscow, 119899, Russia pugach@sai.msu.ru Fax: 007-095-932-88-41
Geophysical Research Abstracts Volumi 3, 2001.

The features of the lunar surface, varying in their individual properties, have a brightness constant in time, and the dynamics of reflected and own radiation is determined in each case only by the geometry of observing conditions at any given moment. Therefore, using the known characteristics of the lunar features, we can determine the standard values of the radiation emitted or reflected by a great number of particular objects, which form a system of standards in a certain wavelength and energy-flux range. The space function of the Moon's thermal emission was constructed by results of the statistical processing of the database 1655 lunar sites in the vector form. The database contains the brightness characteristics of the emitted and reflected radiation measured in an IR (10-12 mm) and a visible (0.445 mm) range for 23 Moon's phase angles and 1954 lunar regions. The space function is based on physical regularities and statistical relationship between the intensity of thermal and reflected radiation, the geometry of observation and illumination, and the albedo and microrelief of the lunar surface. An analytic formula of the dependence of radiation temperature of the lunar surface on the incidence angular parameters make it possible to calculate the infrared temperature for any geometry of the angular parameters. The root-mean-square error in the determination of the radiation temperature is +1.5 K. The computer images were constructed in the form of contour maps of brightness and temperature, of thermal inertia and other thermal parameters, using the database of brightness and temperatures values for lunar-surface areas.


THE CRATERING FEATURES OF THE BASIN "SOUTH POLE-AITKEN".

J.Rodionova and E.Kozlova Sternberg State Astronomical Institute
Geophysical Research Abstracts Volumi 3, 2001.

Morphological features of craters in the South Pole-Aitken are studied. Craters in the basin are compared to craters located in highland and mare regions. In comparision studies, the following morphological features were considered: the degree of rim degradation; the presence of terraces and faults, hills, peaks and ridges, fissures and chains of small craters, lava on the crater floor; the character of the floor; and the presence of ray systems. In the basin 3.8 million sq. km in area, 1538 craters of 10 km in diameter or larger are found. Craters in the South Pole-Aitken are found to be less degraded than those in the mare region. Additionaly, terraces on the inner slopes of craters in the basin are less degraded, and more faults are observed in the craters in the highland region. The craters in the three regions studed are similar in the presence of peaks and hills, while the density of craters with fissures and chains of small craters on the floor are greater in the mare! region. No craters with ray systems are found in the basin. The South Pole Aitken Basin is assumed to have formed late in the period of heavy bombardment. The morphology of craters in the mare region is found to differ drastically from those in the basin and the highland region. A low crater density and the abundance of crater-ruins and craters with faults in the mare region are due to lava flooding of ancient depressions during the period of basaltic volcanism and the destruction of the majority of craters formed in the preceding heavy bombardment period. The mare regions differs in the densities of craters with fissures and chains of small craters, peaks and lavas on the floor. We attribute these distinctions to the difference in endogenic processes that proceeded in the considered regions. The endogenic processes should reveal themselves more often in the mare regions because the lunar crust here is much thinner than in the highland regions.


LUNAR RESOURCES FOR RESCUE OF MANKIND IN XXI CENTURY.

V.V.Shevchenko
Sternberg State Astronomical Institute, Moscow University, Moscow, Russia shev@sai.msu.ru
Geophysical Research Abstracts Volumi 3, 2001.

In results of many ecological investigations it has been found that the permissible level of the energy production inside Earth's environment is about 0.1% of solar energy received by Earth's surface. The value is about 90 TW (90 x 10 12 Watt). On the other hand, the general estimation shows that the total energy use (and production, accordingly) in the world is about 16 TW in the end of 2000. This value will increase by factor of two (about 34 TW) to the year 2050. If the tendency will be preserved the total energy production in the world will approach to 98 TW to the year 2100. It means the permissible level of the energy production inside Earth's environment will be exceeded. But it is obviously that the processes destroying Earth's environment in global scale will begin before it - after middle of century. Hence, the first result of the practical actions for rescue of the Earth's environment must be obtained not late than in 2020 - 2030. It means that general decisions must be approved now or in the beginning of the new century. The only way to resolve this problem consists in the use of extraterrestrial resources. The nearest available body - source of space resources is the Moon. The most known now space energy resource is lunar helium-3. Very likely, the lunar environment contains new resource possibilities unknown now. So, the lunar research space programs must have priority not only in fundamental planetary science, but in practical purposes too..


SPECTRAL FEATURES OF THE AVALANCHE DEPOSITS IN LUNAR CRATER REINER.

V.V.Shevchenko1,2, P.C.Pinet1, S.Chevrel1, Y.Daydou1, T.P.Skobeleva2, O.I.Kvaratskhelia3,
C.Rosemberg1. 1UMR 5562 "Dynamique Terrestre et Planetaire"/CNRS/UPS, Observatoire Midi-
Pyrenees, Toulouse, 31400 France; 2Sternberg Astronomical Institute, Moscow University, Moscow,
119992, Russia, 3Abastumany Astrophysical Observatory, Georgian Academy of Sciences, Georgia.
shev@sai.msu.ru.

m44_75_shevchenko_etal.pdf


FEATURES OF THE HYDROGEN DISTRIBUTION AROUND LUNAR CRATERS PROCLUS AND KEPLER.

M.P. Sinitsin, V.V. Shevchenko, Sternberg Astronomical Institute, Moscow University,
Moscow, 119992, Russia shev@sai.msu.ru.

m44_76_sinitsin_shevchenko.pdf


Научно-популярные обзоры

Наша уникальная Солнечная система.


Материалы Международного юбилейного симпозиума "Научные результаты космических исследований Луны" 1999 г.


Построение селеноцентрической системы координат "Зонд - 8"

Е.П.Алексашин, МИИГАиК, Ю.С.Тимофеев, НИЧ МИИГАиК,
А.М.Ширенин, НИЧ "Геодинамика" МИИГАиК.

lipski.doc
lipski.pdf


Тепловой режим холодных ловушек на Луне

А.А.Бережной, Государственный Астрономический Институт им. Штернберга

Резюме. Проведено моделирование теплового режима грунта холодных ловушек на Луне на глубине до нескольких метров. Показано, что если температура в холодных ловушках на глубине 1-2 см практически не отличается от температуры поверхности, то в состав полярных льдов входят H2O, SO2, CO2. Если же в холодных ловушках образуется теплоизоляционный слой, как в экваториальных районах, то температура на глубине 1-2 м на 50-60 K выше, чем на поверхности, и включение в состав полярных отложений SO2 и CO2 вряд ли возможно. Результаты расчетов средней температуры грунта холодных ловушек можно проверить при проведении наблюдений теплового излучения грунта холодных ловушек в области длин волн 0.1 мм - 10 см. Если будет обнаружено, что средняя яркостная температура полярных лунных районов практически не увеличивается с длиной волны, то этот факт можно рассматривать как косвенное доказательство наличия водяного льда.

RadioMoon.doc
RadioMoon.pdf


Модели мегарельефа Луны по данным космической программы "Клементина"

С.Г.Валеев, В.И.Дьяков, Ульяновский Государственный Технический Университет

Резюме. Описываются результаты математического моделирования мегарельефа Луны и статистического анализа разложения на основе данных космической программы НАСА "КЛЕМЕНТИНА"; рассматриваются проблемы и перспективы исследований.

moonmodl.doc
moonmodl.pdf


О некоторых результатах томографического и электронно-зондового исследования т.н. "частиц с аномальным алюминием", доставленных АЛС "Луна-20"

В.А.Зайцев, кафедра минералогии геологического факультета МГУ, П.Н.Самородский, лаборатория ГНЦ РФ ВНИИГеосистем

Резюме. При изучении трех образцов из т.н. группы частиц с аномальным алюминием показано, что аномальное содержание алюминия, зафиксированное в них - результат ошибки нейтронно-активационного анализа. В породах обнаружены высокопоглащающие включения двух типов: сингенетиченые металлические включения, претерпевшие распад с образованием когенита. Второй тип включений диагностирован как халькозин. Его образование происходило при температуре не ниже 380° С.

moon1.doc
moon1.pdf


О будущих исследованиях Луны

Г.Г.Коль,
Аэрокосмический Институт Берлинского Технического Университета, Германия.

future-r.doc
future-r.pdf


Воспоминания о Ю.Н.Липском

Г.А.Лейкин, Москва.

Резюме. Воспоминания одного из старейших московских астрономов, который в свое время принимал активное участие в космических исследования Луны и планет, долгое время руководил Фотографической комиссией Межведомственного совета по космическим исследованиям, участвовал в координации всех работ по наблюдениям Луны и планет.

memory.doc
memory.pdf


Тепловое излучение лунной поверхности в ИК диапазоне спектра (10-12 мкм)

С.Г.Пугачева,
Государственный астрономический институт им. П.К. Штернберга, Москва, Россия

Резюме. В настоящей работе рассматриваются вопросы реализации метода калибровки трех ИК-снимков поверхности Луны, переданных из космоса первым российским геостационарным искусственным спутником Земли "ГОМС". Изображение Луны сканируется одновременно с изображением Земли для калибровки изображений как стационарный источник видимого и ИК-излучения. Спектральный диапазон снимков в ИК-области составляет 10.5-12.5 мкм, в видимой области - 0.4-0.7 мкм. Приведена фазовая функция радиационной температуры лунной поверхности и графики пространственной индикатрисы теплового излучения.

ir_luna.doc
ir_luna.pdf


Имена астрономов в названиях лунных образований

С.Г. Пугачева, В.В. Шевченко,
Государственный астрономический институт им. П.К.Штернберга, Московский университет, Москва, Россия

Резюме. Приводятся статистические данные по выборке имен лунных кратеров, названных в честь выдающихся астрономов.

nomen.doc
nomen.pdf


Из истории изучения Луны советскими космическими аппаратами

Б.Н.Родионов, профессор, доктор технических наук,
Российский институт мониторинга земель и экосистем.

Резюме. Краткий исторический обзор некоторых работ по картографическому изучению Луны, выполненных в Советском Союзе коллективами сотрудников ГАИШ, МИИГАИК, ИКИ по материалам съемок с космических аппаратов типа "Луна", "Зонд", "Луноход" в 1960-1978 г.г., позволивших получить ранее неизвестные данные о микрорельефе лунной поверхности, геометрической фигуре планеты и мегаобразованиях на её обратной стороне, в том числе о Юго-Западной низменности.

rodionov.doc
rodionov.pdf


Карты и глобусы Луны, созданные при участии отдела исследований Луны и планет

Ж.Ф.Родионова,
Государственный астрономический институт им. П.К.Штернберга

Резюме: Приведено краткое описание картографирования Луны, выполненного при участии сотрудников ГАИШ под научным руководством Ю.Н.Липского.

maps_r.doc
maps_r.pdf


Концепция производственной лунной базы 2050 год

А.Г.Сизенцев, В.В.Шевченко, В.Ф.Семенов, Г.М.Байдал,
РКК ЭНЕРГИЯ , г. Королев, Государственный астрономический институт им. П.К.Штернберга, Московский университет, Москва, Россия

Base-2050Moon.doc
Base-2050Moon.pdf


Участие отдела исследований Луны и планет ГАИШ МГУ в освоении Луны средствами ракетно-космической техники

Б.И.Сотников, Г.М.Байдал, Г.А.Сизенцев,
РКК "ЭНЕРГИЯ" им.С.П.Королева, г. Королев, Россия

Резюме. Кратко изложена история формирования отечественных лунных космических программ на протяжении последних тридцати лет. Подчеркивается особая роль в этом процессе Ю.Н.Липского и основанной им школы планетных исследований. Описаны основные результаты работ Ю.Н.Липского и созданного им коллектива в области прикладных исследований, связанных с осуществлением космических проектов изучения и освоения Луны.

rsce.doc
rsce.pdf


Что они делали на Луне?

Предложение по созданию Международного Атласа Лунных Исследований
Филип Дж. Стук, Отдел географии Университета Западного Онтарио, Лондон, Онтарио, Канада N6А 5С2

Резюме. Исследования Луны космическими аппаратами начались в 1959 г с удара КА "Луны-2" о поверхность и первых фотографий обратной стороны, полученных КА "Луной-3". В 40-ю годовщину этих первых полетов хорошо бы оглянуться на историю исследований Луны? Какие идеи были полезны, а какие бесполезны? Я предлагаю создать Международный Атлас Лунных Исследований, чтобы изложить эту историю в картографической форме. Это позволило бы детально отразить выполненные исследования и создать базу данных по планетным наукам и истории космоса для будущих поколений.

stooke.doc
stooke.pdf


Бассейн "Южный полюс - Эйткен" на первых снимках обратной стороны Луны

В.И.Чикмачев, В.В.Шевченко,
Государственный астрономический институт имени П.К.Штернберга, г. Москва, Россия.

Резюме. Рассматривается история обнаружения гигантского бассейна в южной полярной области Луны, который по первым снимкам обратной стороны Луны был назван и утвержден МАС как "Море Мечты".

basin.doc
basin.pdf


Взгляды мирового сообщества на проблему внеземных ресурсов

В.В.Шевченко,
Государственный астрономический институт им. П.К.Штернберга, Московский университет, Москва, Россия

Резюме. Тезисы доклада на пленарном совместном заседании Комиссии Государственной Думы РФ по законодательному обеспечению проблем устойчивого развития и научного Экспертно-консультативного Совета при Комиссии по теме: О возможности применения ракетно-ядерного потенциала в интересах устойчивого развития России и мира , 28 июня 1999 года.

resource.doc
resource.pdf


Юрий Наумович Липский

В.В.Шевченко, Ж.Ф.Родионова,
Государственный астрономический институт им.П.К.Штернберга

Резюме. Приводятся биографические данные Ю.Н.Липского, результаты его научной деятельности и краткая история образования отдела исследований Луны и планет.

lipsk-j.doc
lipsk-j.pdf


Комментарии и дискуссия


Памяти Юрия Наумовича

С.Г.Валеев, Ульяновский государственный технический университет.


Comments on the regular wave planetology

By G.G. Kochemasov.


Чистой и светлой памяти незабываемого Юрия Наумовича посвящается

А.Н.Санович, Государственный астрономический институт им. П.К. Штернберга, Москва, Россия.


Comment on the International Jubilee Symposium "The Scientific Results of Space Research of the Moon"

Philip J. Stooke, Department of Geography University of Western Ontario


Публикации других авторов

О динамической шкале населения астероидов, сближающихся с Землей.

Золотарёв Р.В.1, Шустов Б.М.2, Корчагин В.И.1
1Южный федеральный университет, Ростов-на-Дону, Россия
2Институт астрономии РАН, Москва, Россия.
Научные труды ИНАСАН, 2020, т.5, вып.5, с.225-229.

С помощью численной модели эволюции населения астероидов, сближающихся с Землей (АСЗ) показано, что характерное время пополнения (истощения) текущего населения АСЗ составляет ~ 5 млн лет. Это время согласуется с результатами других авторов.

zolotarev.pdf


Первые разведчики Луны.

Марченко М.


Первая мягкая посадка на Луну и первый лунный искусственный спутник.

Марченко М.


Автоматическая самоходная станция на Луне и доставка лунного грунта.

Марченко М.